Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Conversational Human-Aware Technology for Optimisation

Description du projet

Une technologie conversationnelle plus humanisée pour l’optimisation

L’industrie et la société automatisent de plus en plus leurs processus, ce qui impose de résoudre des problèmes d’optimisation sous contraintes. Cependant, modéliser le problème d’optimisation est fastidieux et, souvent, les solutions ne répondent pas aux attentes des utilisateurs et ne s’adaptent pas à l’évolution des besoins et des préférences au fil du temps. Le projet CHAT-Opt, financé par l’UE, repose sur l’idée selon laquelle nous devons nous éloigner du concept de la solution optimale pour nous rapprocher de celui de la solution souhaitée. Pour ce faire, les méthodes du projet tireront des enseignements de l’environnement et intégreront des modèles d’apprentissage et de prédiction dans l’optimisation, faciliteront l’interaction de l’utilisateur avec les solutions et développeront un solveur de contraintes conversationnel qui permettra aux utilisateurs de co-créer la solution qu’ils souhaitent.

Objectif

Industry and society are increasingly automating processes, which requires solving constrained optimisation problems. This includes vehicle routing problems in transportation, scheduling of tasks in electricity demand-response programs, rostering of personnel and more. However, the solutions found by state-of-the-art constraint programming solvers are often found to not match user expectations. Solutions
are regularly critiqued by domain experts as impractical, frustrating for people involved or creating unfair situations that a human planner would never propose. As a result, the technology is not accepted or workarounds like manual processing is done which reduces its potential.

This project is based on the idea that we must shift away from the concept of the optimal solution, and must move to that of the desired solution. To make the solutions more humane, we must make the solution process more human-aware. The key to this is to integrate techniques from machine learning that can learn about the context of the environment and user.

This can move the problem formulation process from a one-shot model + solve paradigm to a dialogue-based conversation paradigm between the end-user and the solver. The focus here is not on the use of natural language, but rather on making the constrained programming technology ready for such interactions. This project aims to fundamentally advance it on three fronts:
1) to learn from the environment and integrate the learning and the predictive models into the optimisation;
2) to learn the implicit preferences form the user by letting her/him interact with the solutions; and ultimately
3) to develop a conversational constraint solver that can answer unambiguous questions of the users in terms of explanations and alternatives.

The end goal is a system that lets the user co-create a solution that she/he desires, and that system can adapt to changing needs and preferences over time.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2020-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

KATHOLIEKE UNIVERSITEIT LEUVEN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 893 125,00
Adresse
OUDE MARKT 13
3000 Leuven
Belgique

Voir sur la carte

Région
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 893 125,00

Bénéficiaires (1)

Mon livret 0 0