Projektbeschreibung
Hilbert-Punktschemata auf Oberflächen mit Singularitäten
In den letzten 50 Jahren wurden in der algebraischen Geometrie ausführlich Hilbert-Schemata untersucht, die Teilschemata in algebraischen Varietäten parametrisieren. Das EU-finanzierte Projekt ModSingLDT plant, die enumerativen Invarianten einer der interessantesten Klassen von Hilbert-Schemata zu erforschen, und zwar nulldimensionale Teilschemata einiger grundlegender Klassen von Oberflächensingularitäten. Das Projekt wird außerdem nach Verbindungen zwischen den enumerativen Invarianten und der Chern-Simons-Theorie über die Verknüpfungen der Singularitäten suchen. Um diese Ziele zu erreichen, werden Darstellungen von Scheitelpunktalgebren (Operatoralgebren) auf den Kohomologien oder den abgeleiteten Kategorien dieser Modulräume sowie Motivmaße mit Werten in den Grothendieck-Ringen geometrischer dg-Kategorien angewendet.
Ziel
The aim of this project is to investigate enumerative invariants of the Hilbert schemes parametrizing zero-dimensional subschemes of some basic classes of surface singularities as well as of its higher rank analogues, and find connections between these enumerative invariants and the Chern-Simons theories on the links of the singularities. This question will open brand new relations between algebraic and topological invariants of these singularities.
The main tool to approach the problem will be to develop representations of vertex algebras on the cohomologies or derived categories of these moduli spaces conjecturally giving rise to analogues of the Nekrasov parition function on the singularities. Then we will use recent new developements about a specific motivic measure with values in the Grothendieck ring of geometric dg categories to prove some simplification of the aimed correspondence. In the end we will raise these simplified results to the general level.
This project will allow the researcher to broaden his area of expertise as well as to develop new directions in his research lines. He will complement his knowledge in low-dimensional topology at one of the most prestigious research institutes and under the guidance of one of the worldwide leaders in this field.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Topologie algebraische Topologie
- Naturwissenschaften Mathematik reine Mathematik Algebra algebraische Geometrie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.4. - SPREADING EXCELLENCE AND WIDENING PARTICIPATION
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-WF-2018-2020
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
1053 Budapest
Ungarn
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.