Project description
Assessing the potential of hybrid-electric technologies to be integrated in larger aircraft
Advances in electric power/propulsion technology are revolutionising the aviation sector, allowing for more integrated, sustainable and environmentally friendly solutions. Hybrid-electric technology enables new aircraft concepts. Many research studies have confirmed the technical viability for the integration and operation of the main hybrid–electric techno-bricks in small commuter aircraft. However, the question arises: can these technologies be scaled-up from small general aviation airplanes to larger transport aircraft? The EU-funded CHYLA project, as part of the Clean Sky2 programme, will investigate which hybrid–electric drives can be scaled-up, which technologies are suitable for each category of aircraft when switching-points arise, and how different technologies can be combined to meet the demand for sustainable commercial aircraft.
Objective
"CHYLA - Credible HYbrid eLectric Aircraft aims to develop a landscape of opportunities and limitations of key radical hybrid-electric technologies (battery electric, fuel cell, but also considering non-drop in fuel technologies such as Hydrogen-H2, Liquified Natural Gas) and the ""switching points"" associated to scaling such technologies between different aircraft classes. These classes are: General Aviation, commuter aircraft, regional aircraft, short-medium range and large passenger aircraft, where the focus is on up-scaling the key-technologies. This landscape of design solutions is supported through a ""credibility assessment"" of assumptions underlying the application of these radical technologies, in different technology scenarios. Additionally, the impact of radical solutions will be assessed in terms of the viability of operations, economics and safety (certification). To achieve this, the project will use an approach of integrating novel airframe technologies with a hybrid electric energy network in order to apply credibility-based multidisciplinary design optimization (MDO). In order to provide feasible starting points for this landscape and the MDO, an integrated aircraft design approach will be used with physics-based design methods for the subsystem technologies."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering electric energy
- social sciences economics and business economics
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- engineering and technology environmental engineering energy and fuels fossil energy natural gas
- engineering and technology environmental engineering energy and fuels fuel cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.5.10. - Thematic Topics
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-CS2-CFP11-2020-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.