Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

In-silico Development- and Clinical-Trial-Platform for Testing in-situ Tissue Engineered Heart Valves

Project description

In-silico prediction of safety and performance of a synthetic biodegradable heart valve

Valvular heart disease requires valve replacement or repair. Advances in tissue engineering offer the opportunity to develop a new class of heart valve replacements: synthetic biodegradable heart valves. To accelerate the development of these devices, the EU-funded SimInSitu project is proposing an in-silico model capable of predicting the device’s short- and long-term safety and performance. It will incorporate tissue-remodelling-algorithms, patient-specific-modelling, and device-modelling. All relevant components and processes will undergo an extensive verification, validation and uncertainty quantification programme to generate the necessary credibility and trustworthiness. The development of the in-silico model can facilitate the development of biodegradable devices, shorten the time to market, and contribute to development of a regulatory framework of in-silico methods.

Objective

SimInSitu is aiming to develop a sophisticated in-silico method to predict the short- and long-term behavior of in-situ tissue engineered heart valves by combing advanced tissue remodeling algorithms with a personalized virtual heart modelling approach. The method will be specifically developed to predict the complex transformation process of biodegradable heart valves from the initially synthetic scaffold into a fully remodeled & functional valve. This transformation process, named ETR for Endogenous Tissue Restoration, is the core technology for a new generation of very promising biodegradable vascular device currently developed by Xeltis. ETR makes the use of animal derived tissue, which is used in the majority of commercially available bioprosthetic heart valves, obsolete and avoids thereby durability related issues and potentially minimized the need for reoperations. Though, significant progress was made during the past years in developing ERT based devices, it remains very challenging, costly, time-consuming, and rich with obstacles. New knowledge can only be generated through a tedious trial & error process (requiring preclinical and clinical studies), since the restorative process cannot be replicated in an in-vitro environment. Advanced Computer Modelling & Simulation technologies have the potential to overcome this limitation by allowing to test new designs, modified scaffold compositions, or other applications in a virtual patient-specific environment – in-silico. SimInSitu will not only develop such a computer model, but will also verify and validate it thoroughly by making use of the extensive in-vitro and in-vivo data available and where necessary will generate new data to support the credibility of this in-silico method. The availability of this computer model could contribute significantly to an acceleration of especially the ETR-device development and accelerate their translation into the clinic and market.

Call for proposal

H2020-SC1-DTH-2018-2020

See other projects for this call

Sub call

H2020-SC1-DTH-2020-1

Coordinator

4REALSIM SERVICES BV
Net EU contribution
€ 1 226 562,50
Address
GROENE DIJK 2 B
3401 NJ IJSSELSTEIN
Netherlands

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
West-Nederland Utrecht Utrecht
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost
€ 1 226 562,50

Participants (9)