Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Exploring Musical Possibilities via Machine Simulation

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Pubblicazioni

Efficient Large-scale Audio Tagging via Transformer-to-CNN Knowledge Distillation (si apre in una nuova finestra)

Autori: Florian Schmid, Khaled Koutini, Gerhard Widmer
Pubblicato in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2023, 2023
Editore: IEEE
DOI: 10.48550/arxiv.2211.04772

The match File Format: Encoding Alignments between Scores and Performances (si apre in una nuova finestra)

Autori: Francesco Foscarin, Emmanouil Karystinaios, Silvan David Peter, Carlos Cancino-Chacón, Maarten Grachten, Gerhard Widmer
Pubblicato in: Proceedings of the Music Encoding Conference (MEC 2022), 2022
Editore: Tne Music Encoding Initiative (MEI)
DOI: 10.48550/arxiv.2206.01104

8+8=4: Formalizing Time Units to Handle Symbolic Music Durations (si apre in una nuova finestra)

Autori: Emmanouil Karystinaios, Francesco Foscarin, Florent Jacquemard, Masahiko Sakai, Satoshi Tojo, Gerhard Widmer
Pubblicato in: Proceedings of the 16th International Symposium on Computer Music Multidisciplinary Research (CMMR 2023), 2023
Editore: Springer
DOI: 10.48550/arxiv.2310.14952

Cluster and Separate: A GNN Approach to Voice and Staff Prediction for Score Engraving (si apre in una nuova finestra)

Autori: Francesco Foscarin, Emmanouil Karystinaios, Eita Nakamura, Gerhard Widmer
Pubblicato in: Proceedings of the 25th International Society for Music Information Retrieval Conference (ISMIR 2024), 2024
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2407.21030

The ACCompanion: Combining Reactivity, Robustness, and Musical Expressivity in an Automatic Piano Accompanist (si apre in una nuova finestra)

Autori: Carlos Cancino-Chacón, Silvan Peter, Patricia Hu, Emmanouil Karystinaios, Florian Henkel, Francesco Foscarin, Nimrod Varga, Gerhard Widmer
Pubblicato in: Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI-23), 2023
Editore: IJCAI
DOI: 10.48550/arxiv.2304.12939

EngravingGNN: A Hybrid Graph Neural Network for End-to-End Piano Score Engraving (si apre in una nuova finestra)

Autori: Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer
Pubblicato in: Proceedings of the International Conference on Technologies for Music Notation and Representation (TENOR), 2025
Editore: Central Conservatory of Music Beijing
DOI: 10.48550/arxiv.2509.19412

Are we describing the same sound? An Analysis of Word Embedding Spaces of Expressive Piano Performance (si apre in una nuova finestra)

Autori: Silvan Peter, Shreyan Chowdhury, Carlos Cancino-Chacón, Gerhard Widmer
Pubblicato in: Proceedings of the Forum for Information Retrieval Evaluation (FIRE 2023), 2023
Editore: Association for Computing Machinery (ACM)
DOI: 10.1145/3632754.3632759

Passage Summarization with Recurrent Models for Audio-Sheet Music Retrieval (si apre in una nuova finestra)

Autori: Luis Carvalho, Gerhard Widmer
Pubblicato in: Proceedings of the 24th Conference of the International Society for Music Information Retrieval (ISMIR 2023), 2023
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2309.12111

Music Boomerang: Reusing Diffusion Models for Data Augmentation and Audio Manipulation (si apre in una nuova finestra)

Autori: Alexander Fichtinger, Jan Schlüter, Gerhard Widmer
Pubblicato in: Proceedings of the 22nd Sound and Music Computing Conference (SMC 2025), 2025
Editore: Sound and Music Computing Initiative
DOI: 10.48550/arxiv.2507.04864

The GlueNote: Learned Representations for Robust and Flexible Note Alignment (si apre in una nuova finestra)

Autori: Silvan Peter, Gerhard Widmer
Pubblicato in: Proceedings of the 25th International Society for Music Information Retrieval Conference (ISMIR 2024), 2024
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2408.04309

Are Inherently Interpretable Models More Robust? A Study in Music Emotion Recognition (si apre in una nuova finestra)

Autori: Katharina Hoedt, Arthur Flexer, Gerhard Widmer
Pubblicato in: Proceedings of the 22nd Sound and Music Computing Conference (SMC 2025), 2025
Editore: Sound and Music Computing Initiative
DOI: 10.5281/zenodo.15837274

Partitura: A Python Package for Symbolic Music Processing (si apre in una nuova finestra)

Autori: Carlos Cancino-Chacón, Silvan David Peter, Emmanouil Karystinaios, Francesco Foscarin, Maarten Grachten, Gerhard Widmer
Pubblicato in: Proceedings of the Music Encoding Conference (MEC 2022), 2022
Editore: The Music Encoding Initiative (MEI)
DOI: 10.48550/arxiv.2206.01071

Estimating Musical Surprisal from Audio in Autoregressive Diffusion Model Noise Spaces (si apre in una nuova finestra)

Autori: Mathias Rose Bjare, Stefan Lattner, Gerhard Widmer
Pubblicato in: Proceedings of the 26th International Society for Music Information Retrieval Conference (ISMIR), 2025
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2508.05306

The Rach3 Dataset: Towards Data-Driven Analysis of Piano Performance Rehearsal (si apre in una nuova finestra)

Autori: Carlos Cancino-Chacón, Ivan Pilkov
Pubblicato in: Proceedings of the 30th International Conference on Multimedia Modeling (MMM 2024), 2024
Editore: Springer Verlag
DOI: 10.1007/978-3-031-56435-2_3

Decoding and Visualising Intended Emotion in an Expressive Piano Performance (si apre in una nuova finestra)

Autori: Shreyan Chowdhury, Gerhard Widmer
Pubblicato in: 23rd International Society for Music Information Retrieval Conference (ISMIR 2022), Late-Breaking/Demo Papers, 2022
Editore: International Society for Music Information Retrieval (ISMIR)
DOI: 10.48550/arxiv.2303.01875

Beat this: Accurate Beat Tracking Without DBN Postprocessing (si apre in una nuova finestra)

Autori: Francesco Foscarin, Jan Schlüter, Gerhard Widmer
Pubblicato in: Proceedings of the 25th International Society for Music Information Retrieval Conference (ISMIR 2024), 2024
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2407.21658

AnalysisGNN: Unified Music Analysis with Graph Neural Networks (si apre in una nuova finestra)

Autori: Emmanouil Karystinaios, Johannes Hentschel, Markus Neuwirth, Gerhard Widmer
Pubblicato in: 17th International Symposium on Computer Music Multidisciplinary Research (CMMR), 2025
Editore: University College London
DOI: 10.48550/arxiv.2509.06654

Sounding Out Reconstruction Error-Based Evaluation of Generative Models of Expressive Performance (si apre in una nuova finestra)

Autori: Silvan Peter, Carlos Cancino-Chacón, Emmanouil Karystinaios, Gerhard Widmer
Pubblicato in: Proceedings of the 10th International Conference on Digital Libraries for Musicology (DLfM '23), 2023, Pagina/e 58-66
Editore: ACM
DOI: 10.1145/3625135.3625141

Discrete Diffusion Probabilistic Models for Symbolic Music Generation

Autori: Matthias Plasser, Silvan Peter, Gerhard Widmer
Pubblicato in: Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI-23), 2023
Editore: IJCAI

Exploring System Adaptations For Minimum Latency Real-Time Piano Transcription (si apre in una nuova finestra)

Autori: Patricia Hu, Silvan David Peter, Jan Schlüter, Gerhard Widmer
Pubblicato in: Proceedings of the 26th International Society for Music Information Retrieval Conference (ISMIR 2025), 2025
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2509.07586

The Batik-plays-Mozart Corpus: Linking Performance to Score to Musicological Annotations (si apre in una nuova finestra)

Autori: Patricia Hu, Gerhard Widmer
Pubblicato in: Proceedings of the 24th International Society for Music Information Retrieval Conference (ISMIR 2023), 2023
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2309.02399

"Concept-Based Techniques for ""Musicologist-friendly"" Explanations in a Deep Music Classifier" (si apre in una nuova finestra)

Autori: Francesco Foscarin, Katharina Hoedt, Verena Praher, Arthur Flexer, Gerhard Widmer
Pubblicato in: Proceedings of the 23rd International Society for Music Information Retrieval Conference (ISMIR 2022), 2022
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2208.12485

Estimating Musical Surprisal in Audio (si apre in una nuova finestra)

Autori: Mathias Rose Bjare, Giorgia Cantisani, Stefan Lattner, Gerhard Widmer
Pubblicato in: Proceedings of the 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2025), 2025
Editore: IEEE
DOI: 10.48550/arxiv.2501.07474

Exploring Sampling Techniques for Generating Melodies with a Transformer Language Model (si apre in una nuova finestra)

Autori: Mathias Rose Bjare, Stefan Lattner, Gerhard Widmer
Pubblicato in: Proceedings of the 24th International Society for Music Information Retrieval Conference (ISMIR 2023), 2023
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2308.09454

Perception-Inspired Graph Convolution for Music Understanding Tasks (si apre in una nuova finestra)

Autori: Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer
Pubblicato in: Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI-24), 2024
Editore: International Joint Conferences on Artificial Intelligence, Inc. (IJCAI)
DOI: 10.48550/arxiv.2405.09224

Cadence Detection in Symbolic Classical Music using Graph Neural Networks (si apre in una nuova finestra)

Autori: Emmanouil Karystinaios and Gerhard Widmer
Pubblicato in: Proceedings of the 23rd International Society for Music Information Retrieval Conference (ISMIR 2022), 2022
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2208.14819

Towards Robust and Truly Large-Scale Audio-Sheet Music Retrieval (si apre in una nuova finestra)

Autori: Luis Carvalho, Gerhard Widmer
Pubblicato in: Proceedings of the IEEE 6th International Conference on Multimedia Information Processing and Retrieval (MIPR), 2023
Editore: IEEE
DOI: 10.48550/arxiv.2309.12158

SMUG-Explain: A Framework for Symbolic Music Graph Explanations (si apre in una nuova finestra)

Autori: Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer
Pubblicato in: Proceedings of the Sound and Music Computing Conference 2024 (SMC2024), 2024
Editore: Sound and Music Computing Network
DOI: 10.48550/arxiv.2405.09241

Predicting Music Hierarchies with a Graph-Based Neural Decoder (si apre in una nuova finestra)

Autori: Francesco Foscarin, Daniel Harasim, Gerhard Widmer
Pubblicato in: Proceedings of the 24th International Society for Music Information Retrieval Conference (ISMIR 2023), 2023
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2306.16955

Self-Supervised Contrastive Learning for Robust Audio-Sheet Music Retrieval Systems (si apre in una nuova finestra)

Autori: Luis Carvalho, Tobias Washüttl, Gerhard Widmer
Pubblicato in: Proceedings of the 14th ACM Conference on Multimedia Systems (MMSys 2023), 2023
Editore: Association for Computing Machinery (ACM)
DOI: 10.1145/3587819.3590968

How to Infer Repeat Structures in MIDI Performances (si apre in una nuova finestra)

Autori: Silvan Peter, Patricia Hu, Gerhard Widmer
Pubblicato in: Proceedings of the Music Encoding Conference (MEC 2025), 2025
Editore: Music Encoding Initiative
DOI: 10.48550/arxiv.2505.05055

Differentiable Dictionary Search: Integrating Linear Mixing with Deep Non-Linear Modelling for Audio Source Separation

Autori: Lukas Samuel Martak, Rainer Kelz, Gerhard Widmer
Pubblicato in: Proceedings of the 24th International Congress on Acoustics (ICA 2022), 2022
Editore: International Commission for Acoustics (ICA)

Defending a Music Recommender Against Hubness-Based Adversarial Attacks (si apre in una nuova finestra)

Autori: Katharina Hoedt, Arthur Flexer, Gerhard Widmer
Pubblicato in: Proceedings of the 19th Sound and Music Computing Conference (SMC 2022), 2022
Editore: Telecom Saint-Etienne
DOI: 10.5281/zenodo.6573391

Symbolic Music Representations for Classification Tasks: A Systematic Evaluation (si apre in una nuova finestra)

Autori: Huan Zhang, Emmanouil Karystinaios, Simon Dixon, Gerhard Widmer, Carlos Eduardo Cancino-Chacón
Pubblicato in: Proceedings of the 24th International Society for Music Information Retrieval Conference (ISMIR 2023), 2023
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2309.02567

GraphMuse: A Library for Symbolic Music Graph Processing (si apre in una nuova finestra)

Autori: Emmanouil Karystinaios, Gerhard Widmer
Pubblicato in: Proceedings of the 25th International Society for Music Information Retrieval Conference (ISMIR 2024), 2024
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2407.12671

Pairing Real-Time Piano Transcription with Symbol-level Tracking for Precise and Robust Score Following (si apre in una nuova finestra)

Autori: Silvan Peter, Patricia Hu, Gerhard Widmer
Pubblicato in: Proceedings of the 22nd Sound and Music Computing Conference (SMC 2025), 2025
Editore: Sound and Music Computing Initiative
DOI: 10.48550/arxiv.2505.05078

Optical Music Recognition of Jazz Lead Sheets (si apre in una nuova finestra)

Autori: Juan Carlos Martinez-Sevilla, Francesco Foscarin, Patricia Garcia-Iasci, David Rizo, Jorge Calvo-Zaragoza, Gerhard Widmer
Pubblicato in: Proceedings of the 26th International Society for Music Information Retrieval Conference (ISMIR 2025), 2025
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2509.05329

Towards Musically Informed Evaluation of Piano Transcription Models (si apre in una nuova finestra)

Autori: Patricia Hu, Lukas Martak, Carlos Cancino-Chacon, Gerhard Widmer
Pubblicato in: Proceedings of the 25th International Society for Music Information Retrieval Conference (ISMIR 2024), 2024
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2406.08454

Exploring Performance-Complexity Trade-Offs in Sound Event Detection Models (si apre in una nuova finestra)

Autori: Tobias Morocutti, Florian Schmid, Jonathan Greif, Francesco Foscarin, Gerhard Widmer
Pubblicato in: Proceedings of the 33rd European Signal Processing Conference (EUSIPCO 2025), 2025
Editore: IEEE
DOI: 10.48550/arxiv.2503.11373

Online Symbolic Music Alignment with Offline Reinforcement Learning (si apre in una nuova finestra)

Autori: Silvan Peter
Pubblicato in: Proceedings of the 24th International Society for Music Information Retrieval Conference (ISMIR 2023), 2023
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2401.00466

Controlling Surprisal in Music Generation via Information Content Curve Matching (si apre in una nuova finestra)

Autori: Mathias Bjare, Stefan Lattner, Gerhard Widmer
Pubblicato in: Proceedings of the 25th International Society for Music Information Retrieval Conference (ISMIR 2024), 2023
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2408.06022

Learning General Audio Representations with Large-Scale Training of Patchout Audio Transformers (si apre in una nuova finestra)

Autori: Khaled Koutini, Shahed Masoudian, Florian Schmid, Hamid Eghbal-zadeh, Jan Schlüter, Gerhard Widmer
Pubblicato in: Proceedings of HEAR 2021: Holistic Evaluation of Audio Representations, 2022, Pagina/e PMLR 166, 65-89, ISSN 2640-3498
Editore: JMLR, Inc.
DOI: 10.48550/arxiv.2211.13956

Music Visualisation and Its Short-Term Effect on Appraisal Skills (si apre in una nuova finestra)

Autori: Ali Nikrang, Maarten Grachten, Martin Gasser, Harald Frostel, Gerhard Widmer, Tom Collins
Pubblicato in: HCI International 2023 – Late Breaking Papers. HCII 2023, 2023
Editore: Springer
DOI: 10.1007/978-3-031-48044-7_9

Musical Voice Separation as Link Prediction: Modeling a Musical Perception Task as a Multi-Trajectory Tracking Problem

Autori: Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer
Pubblicato in: Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023), 2023
Editore: IJCAI

Roman Numeral Analysis with Graph Neural Networks: Onset-wise Predictions from Note-wise Features (si apre in una nuova finestra)

Autori: Emmanouil Karystinaios, Gerhard Widmer
Pubblicato in: Proceedings of the 24th International Society for Music Information Retrieval Conference (ISMIR 2023), 2023
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2307.03544

Language Models for Music Medicine Generation (si apre in una nuova finestra)

Autori: Emmanouil Nikolakakis, Joann Ching, Emmanouil Karystinaios, Gabrielle Sipin, Gerhard Widmer, Razvan Marinescu
Pubblicato in: Extended Abstracts, Late-Breaking Demo Session, 25th International Society for Music Information Retrieval Conference (ISMIR 2024),, 2024
Editore: International Society for Music Information Retrieval
DOI: 10.48550/arxiv.2411.09080

Quantifying the Corpus Bias Problem in Automatic Music Transcription Systems (si apre in una nuova finestra)

Autori: Lukas Samuel Martak, Patricia Hu, Gerhard Widmer
Pubblicato in: 1st International Workshop on Sound Signal Processing Applications (IWSSPA), 2024
Editore: CMMSE
DOI: 10.48550/arxiv.2408.04737

Concept-based Explanations for Music Emotion Recognition (si apre in una nuova finestra)

Autori: Verena Praher, Verena Szojak, Gerhard Widmer
Pubblicato in: Proceedings of the 22nd Sound and Music Computing Conference (SMC 2025), 2025
Editore: Sound and Music Computing Initiative
DOI: 10.5281/zenodo.15837275

Expressivity-aware Music Performance Retrieval using Mid-level Perceptual Features and Emotion Word Embeddings

Autori: Shreyan Chowdhury, Gerhard Widmer
Pubblicato in: Proceedings of the Forum for Information Retrieval Evaluation Conference /(FIRE 2023), 2023
Editore: ACM

Commentary on “A Computational Approach to the Detection and Prediction of (Ir)Regularity in Children’s Folk Songs” (si apre in una nuova finestra)

Autori: Carlos Cancino-Chacón
Pubblicato in: Empirical Musicology Review, Numero 16(2), 2023, Pagina/e 328-335, ISSN 1559-5749
Editore: The Ohio State University Libraries
DOI: 10.18061/emr.v16i2.9159

Differentiable Short-Term Models for Efficient Online Learning and Prediction in Monophonic Music (si apre in una nuova finestra)

Autori: Mathias Rose Bjare, Stefan Lattner, Gerhard Widmer
Pubblicato in: Transactions of the International Society for Music Information Retrieval, Numero 5(1), 2022, Pagina/e 190-207, ISSN 2514-3298
Editore: Ubiquity Press
DOI: 10.5334/tismir.123

Automatic Note-Level Score-to- Performance Alignments in the ASAP Dataset (si apre in una nuova finestra)

Autori: Silvan Peter, Carlos Eduardo Cancino-Chacón, Francesco Foscarin, Andrew P. McLeod, Florian Henkel, Emmanouil Karystinaios, Gerhard Widmer
Pubblicato in: Transactions of the International Society for Music Information Retrieval, Numero 6(1), 2023, Pagina/e 27–42, ISSN 2514-3298
Editore: Ubiquity Press
DOI: 10.5334/tismir.149

Balancing Bias and Performance in Polyphonic Piano Transcription Systems (si apre in una nuova finestra)

Autori: Lukas Samuel Martak, Rainer Kelz, Gerhard Widmer
Pubblicato in: Frontiers in Signal Processing, Numero 2:975932, 2022, ISSN 2673-8198
Editore: Frontiers Media SA
DOI: 10.3389/frsip.2022.975932

DExter: Learning and Controlling Performance Expression with Diffusion Models (si apre in una nuova finestra)

Autori: Huan Zhang, Shreyan Chowdhury, Carlos Eduardo Cancino-Chacón, Jinhua Liang, Simon Dixon, Gerhard Widmer
Pubblicato in: Applied Sciences, Numero 14(15), 2024, Pagina/e 1-17, ISSN 2076-3417
Editore: MDPI
DOI: 10.3390/app14156543

Dynamic Convolutional Neural Networks as Efficient Pre-Trained Audio Models (si apre in una nuova finestra)

Autori: Florian Schmid, Khaled Koutini, Gerhard Widmer
Pubblicato in: IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2024, ISSN 2329-9290
Editore: IEEE Advancing Technology for Humanity
DOI: 10.1109/taslp.2024.3376984

Constructing Adversarial Examples to Investigate the Plausibility of Explanations in Deep Audio and Image Classifiers (si apre in una nuova finestra)

Autori: Katharina Hoedt, Verena Praher, Arthur Flexer, Gerhard Widmer
Pubblicato in: Neural Computing and Applications, Numero 2022, 2022, ISSN 0941-0643
Editore: Springer Verlag
DOI: 10.1007/s00521-022-07918-7

The Human Performance: Computational Methods for the Analysis of Played Classical Piano Music

Autori: Silvan Peter
Pubblicato in: 2025
Editore: Johannes Kepler University Linz

Symbolic Music Generation using Discrete Diffusion Probabilistic Models

Autori: Matthias Plasser
Pubblicato in: Master Thesis, 2023
Editore: Johannes Kepler University Linz (JKU)

(de)Fusion of Score and Performance Representations for Symbolic Music Generation

Autori: Tara Jadidi
Pubblicato in: Master Thesis, 2024
Editore: Johannes Kepler University (JKU)

Multi-modal Deep Learning for On-line Music Following in Score Sheet Images

Autori: Florian Henkel
Pubblicato in: PhD Thesis, 2022
Editore: Johannes Kepler University Linz

Multi-modal Music Search and Retrieval Without Symbolic Representations

Autori: Luis Carvalho
Pubblicato in: PhD Thesis, 2025
Editore: Johannes Kepler University

Modelling Emotional Expression in Music Using Interpretable and Transferable Perceptual Features

Autori: Shreyan Chowdhury
Pubblicato in: PhD Thesis, 2022
Editore: Johannes Kepler University Linz

Symbolic Music Analysis with Graph Neural Networks

Autori: Emmanouil Karystinaios
Pubblicato in: Ph.D. Thesis, 2024
Editore: Johannes Kepler University (JKU)

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile

Il mio fascicolo 0 0