Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Mirror symmetry in Algebraic Geometry

Descrizione del progetto

Una «galleria di specchi simmetrici» amplia il programma di Gross-Siebert

In matematica uno spazio speculare ha una forma molto diversa dal suo «riflesso», ma condivide con esso numerose proprietà quantiche. Questa equivalenza può far sì che un calcolo complesso su uno spazio diventi molto più semplice sullo spazio speculare. Il programma di Gross-Siebert, sviluppato nel corso degli ultimi due decenni, concentra l’attenzione sull’incrementare la comprensione della simmetria speculare ed è attualmente oggetto di numerosi corsi universitari, libri scientifici e lezioni. I finanziamenti dell’UE assegnati al progetto MSAG sosterranno l’applicazione delle tecniche del programma di Gross alla costruzione di nuovi specchi associati agli spazi di Calabi-Yau, soluzioni a sei dimensioni delle equazioni di gravità elaborate da Einstein, che si rivelano particolarmente interessanti nella teoria delle stringhe.

Obiettivo

Mirror symmetry is a phenomenon first discovered by string theorists in 1989. This phenomenon, when described in mathematical language, posits that certain kinds of geometric objects, known as Calabi-Yau manifolds, come in pairs X, Y. Further, mirror symmetry posits an intricate relationship between the geometry of the members of the pair. This relationship can be summarized by the rough statement that the symplectic geometry of X is isomorphic to the complex geometry of Y. Mathematical explorations of mirror symmetry have led to deep and profound insights in algebraic, logarithmic, symplectic and differential geometry, as well as algebraic combinatorics and representation theory. Working with Siebert, I have developed a program (colloquially referred to as the Gross-Siebert program) for exploring the underlying geometry of mirror symmetry using methods from algebraic and tropical geometry.

I propose to use the techniques developed with Siebert to make significant breakthroughs in our understanding of mirror symmetry. Recently, we gave a general mirror construction for log Calabi-Yau pairs and maximally unipotent degenerations of Calabi-Yau manifolds. This allows the possibility of dramatic progress in the subject. The construction of a mirror goes by way of the construction of its coordinate ring. These coordinate rings can be viewed as the degree zero part of a `relative quantum cohomology ring.' I plan to generalize the construction of this ring to all degrees. A proof of mirror symmetry at genus zero could then be realised by constructing an isomorphism between this ring and the ring of polyvector fields of the mirror. I will also use the new constructions of mirrors to develop powerful new methods for constructing algebraic varieties, and I will develop a range of practical techniques for understanding the mirrors constructed. I also propose to explore a range of other enumerative invariants in the context of the Gross-Siebert program.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
La classificazione di questo progetto è stata convalidata da un essere umano.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-ADG - Advanced Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2020-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 2 434 492,00
Indirizzo
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
Regno Unito

Mostra sulla mappa

Regione
East of England East Anglia Cambridgeshire CC
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 2 434 492,00

Beneficiari (1)

Il mio fascicolo 0 0