Project description
Machine learning could accelerate the design of sophisticated analogue ci
The era of smart-everything has led to a surge in the need for advanced semiconductor technologies and intelligent data processing. Despite advances in the field, analogue circuit design lags behind its digital counterpart: analogue circuits are still produced in the laboratory, which results in error-prone cycles and high development costs. The EU-funded AnalogCreate project will tap into the potential of machine learning to speed up the design of advanced integrated circuits for promising information and communication applications. Project activities will enable for the first time the autonomous creation of affordable analogue circuits from specifications to fully verified layout – all without being amenable to human feedback.
Objective
Progress in semiconductor technology and in intelligent data processing are converging today, opening the door to countless smart ICT applications through the Cloud and Internet of Everything, to the peoples benefit in years to come. Applications that interact with the physical world (e.g. environmental sensing, healthcare, autonomous vehicles, etc.), also need analog integrated circuits in the cyber-physical or edge layer. But while digital circuits are largely synthesized automatically through software, the analog circuits are mainly still handcrafted in industry with low design productivity. This results in long and error-prone design cycles, and the high development costs jeopardize many potential new ICT applications from ever being realized (e.g. solutions for rare diseases). It becomes even more problematic when moving to advanced technologies below 16 nm CMOS, that come with way more design and layout rules to be dealt with. The showstopper for state-of-the-art analog synthesis tools is that they require design heuristics and constraints to be entered explicitly by designers in order to handle the humongous solution space and to steer the circuit and layout optimizations towards acceptable solutions. The proposed disruptively new approach is to use the self-learning capabilities of advanced machine learning algorithms to self-learn and then exploit the design expertise and constraints from the many available successfully completed designs. Also a true circuit topology synthesis approach will be developed to create a proper (possibly novel) schematic from the target specifications, as well as an innovative formal analog design verification approach based on Quick Error Detection. These innovations will enable for the first time ever to truly autonomously create analog circuits from specifications to fully verified layout without direct input from any designer in the loop, and therefore enable the affordable implementation of many promising ICT applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences computer and information sciences internet
- natural sciences mathematics pure mathematics topology
- social sciences economics and business economics production economics productivity
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3000 Leuven
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.