Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Autonomous Creation of Analog Integrated Circuits based on Self-Learning of Design Expertise

Descrizione del progetto

L’apprendimento automatico potrebbe accelerare la progettazione di sofisticati ci analogici

L’era dello «smart-everything» ha determinato un notevole incremento della necessità di tecnologie avanzate nell’ambito dei semiconduttori e dell’elaborazione intelligente dei dati. Nonostante i progressi nel settore, la progettazione di circuiti analogici è in ritardo rispetto alla sua controparte digitale, essendo questi tuttora prodotti in laboratorio, il che si traduce in cicli soggetti a errori e in costi di sviluppo elevati. Il progetto AnalogCreate, finanziato dall’UE, sfrutterà il potenziale dell’apprendimento automatico per accelerare la progettazione di circuiti integrati avanzati per promettenti applicazioni di informazione e comunicazione. Le attività del progetto permetteranno per la prima volta la creazione autonoma di circuiti analogici accessibili, dalle specifiche a uno schema circuitale accuratamente verificato, il tutto senza dover ricorrere all’intervento umano.

Obiettivo

Progress in semiconductor technology and in intelligent data processing are converging today, opening the door to countless smart ICT applications through the Cloud and Internet of Everything, to the peoples benefit in years to come. Applications that interact with the physical world (e.g. environmental sensing, healthcare, autonomous vehicles, etc.), also need analog integrated circuits in the cyber-physical or edge layer. But while digital circuits are largely synthesized automatically through software, the analog circuits are mainly still handcrafted in industry with low design productivity. This results in long and error-prone design cycles, and the high development costs jeopardize many potential new ICT applications from ever being realized (e.g. solutions for rare diseases). It becomes even more problematic when moving to advanced technologies below 16 nm CMOS, that come with way more design and layout rules to be dealt with. The showstopper for state-of-the-art analog synthesis tools is that they require design heuristics and constraints to be entered explicitly by designers in order to handle the humongous solution space and to steer the circuit and layout optimizations towards acceptable solutions. The proposed disruptively new approach is to use the self-learning capabilities of advanced machine learning algorithms to self-learn and then exploit the design expertise and constraints from the many available successfully completed designs. Also a true circuit topology synthesis approach will be developed to create a proper (possibly novel) schematic from the target specifications, as well as an innovative formal analog design verification approach based on Quick Error Detection. These innovations will enable for the first time ever to truly autonomously create analog circuits from specifications to fully verified layout without direct input from any designer in the loop, and therefore enable the affordable implementation of many promising ICT applications.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-ADG - Advanced Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2020-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

KATHOLIEKE UNIVERSITEIT LEUVEN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 2 500 000,00
Indirizzo
OUDE MARKT 13
3000 Leuven
Belgio

Mostra sulla mappa

Regione
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 2 500 000,00

Beneficiari (1)

Il mio fascicolo 0 0