Descripción del proyecto
Una línea de investigación audaz sobre la geometría domesticada y su relación con la teoría de Hodge
En el lenguaje de las matemáticas de alto nivel, las palabras comunes adquieren significados nuevos y la línea que separa el álgebra y la geometría se desdibuja. La geometría algebraica versa sobre curvas o superficies que se pueden representar como objetos geométricos y como soluciones de ecuaciones algebraicas (polinómicas). Esta disciplina ha tenido un efecto notable en las descripciones de la física y la teoría cuántica. La teoría de Hodge constituye la principal herramienta para analizar los conjuntos de soluciones de ecuaciones algebraicas sobre los números complejos, pero no es algebraica. La geometría domesticada puede proporcionar nuevos conocimientos. La financiación con fondos europeos del proyecto TameHodge permitirá a su equipo respaldar la investigación de esta interesante conexión entre la geometría domesticada y la teoría de Hodge.
Objetivo
Hodge theory, as developed by Deligne and Griffiths, is the main tool for analyzing the geometry and arithmetic of complex algebraic varieties, that is, solution sets of algebraic equations over the complex numbers. It occupies a central position in mathematics through its relations to differential geometry, algebraic geometry, differential equations and number theory. It is an essential fact that at heart, Hodge theory is NOT algebraic. On the other hand, some of the deepest conjectures in mathematics (the Hodge conjecture and the Grothendieck period conjecture) suggest that this transcendence is severely constrained.
Recent work of myself and others suggests that tame geometry, whose idea was introduced by Grothendieck in the 1980s, is the natural setting for understanding these constraints. Tame geometry, developed by model-theorist as o-minimal geometry, has for prototype real semi-algebraic geometry, but is much richer. As a spectacular application of tame geometry, Bakker, Tsimerman and I recently reproved a famous result of Cattani-Deligne-Kaplan, often considered as the most serious evidence for the Hodge conjecture: the algebraicity of Hodge loci.
I propose to lead a group at HU Berlin to explore this striking new connection between tame geometry and Hodge theory, with three axes: (I) attack the arithmetic of periods coming from the moduli space of abelian differentials; this opens a completely new perspective on this space cherished by dynamicists; (II) attack some fundamental questions for general variations of Hodge structures: fields of definition of Hodge loci (related to the conjecture that Hodge classes are absolute Hodge classes); atypical intersections, for instance for families of Calabi- Yau varieties; Ax-Schanuel conjecture for mixed period maps and for Hodge bundles; (III) attack Simpsons Standard conjecture for local systems through the tame geometry of the non-abelian Hodge correspondence.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-ADG - Advanced Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2020-ADG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
10117 Berlin
Alemania
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.