Description du projet
Améliorer la compréhension topologique des catégories modulaires non semi-simples
Les catégories modulaires sont des structures algébriques omniprésentes dans de nombreux champs des mathématiques, notamment la théorie topologique des champs quantiques et la théorie conforme des champs. La théorie des catégories modulaires sert à étudier la symétrie quantique et les phases topologiques de la matière. Les catégories modulaires dites «semi-simples» sont bien décrites par la théorie topologique des champs 3D, mais ce n’est pas le cas des catégories modulaires non semi-simples. Avec le soutien du programme Actions Marie Skłodowska-Curie, le projet Modular Functors entend combler cette lacune en résolvant des problèmes concrets liés à la description des catégories modulaires non semi-simples à l’aide de la théorie topologique des champs 3D.
Objectif
Non-semisimple differential graded modular functors: While semisimple modular categories can be entirely understood in terms of three-dimensional topological field theory, an equally satisfactory topological understanding of non-semisimple modular categories is not available. The proposed project will solve concrete problems related to the topological understanding of non-semisimple modular categories by unraveling within a homotopy coherent framework the relation between the homological algebra of a modular category (in particular, its Hochschild complex) and low-dimensional topology. The backbone of this approach is the differential graded modular functor associated to any modular category (a consistent system of projective mapping class group representations on chain complexes satisfying excision) that I have recently established in joint work with Schweigert. Among the concrete objectives is a generalization of the Verlinde formula to a statement about two compatible E_2-structures on the differential graded conformal block for the torus. This will naturally link the Verlinde formula to the Deligne conjecture. Moreover, rigidity requirements for categories that can be extracted from a modular functor will be studied systematically using cyclic and modular operads and results of Costello and Giansiracusa. This will lead to a vast generalization of existing string-net techniques, namely string-net complexes for any pivotal Grothendieck-Verdier category in the sense of Boyarchenko-Drinfeld. These string-net complexes can be used to compute differential graded conformal blocks for modular categories which are the Drinfeld center of a spherical pivotal finite tensor category and to create a link to Morrison-Walker blob homology.
The key techniques that I will learn during the fellowship involve graph models for mapping class group actions and multiplicative structures on Hochschild complexes. My host Nathalie Wahl is an expert in these areas.
Champ scientifique
Mots‑clés
Programme(s)
Régime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
1165 Kobenhavn
Danemark