Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Non-semisimple differential graded modular functors

Descrizione del progetto

Migliorare la comprensione topologica delle categorie modulari non semisemplici

Le categorie modulari sono strutture algebriche molto diffuse in numerosi rami della matematica, tra cui la teoria quantistica dei campi topologica e la teoria dei campi conforme. La teoria delle categorie modulari viene utilizzata per studiare la simmetria quantistica e le fasi topologiche della materia. Le cosiddette categorie modulari semisemplici sono ben descritte in termini di teoria dei campi topologica 3D, ma lo stesso non vale per le categorie modulari non semisemplici. Con il sostegno del programma di azioni Marie Skłodowska-Curie, il progetto Modular Functors sta colmando questa lacuna, risolvendo problemi concreti relativi alla descrizione di categorie modulari non semisemplici mediante l’impiego della teoria dei campi topologica 3D.

Obiettivo

Non-semisimple differential graded modular functors: While semisimple modular categories can be entirely understood in terms of three-dimensional topological field theory, an equally satisfactory topological understanding of non-semisimple modular categories is not available. The proposed project will solve concrete problems related to the topological understanding of non-semisimple modular categories by unraveling within a homotopy coherent framework the relation between the homological algebra of a modular category (in particular, its Hochschild complex) and low-dimensional topology. The backbone of this approach is the differential graded modular functor associated to any modular category (a consistent system of projective mapping class group representations on chain complexes satisfying excision) that I have recently established in joint work with Schweigert. Among the concrete objectives is a generalization of the Verlinde formula to a statement about two compatible E_2-structures on the differential graded conformal block for the torus. This will naturally link the Verlinde formula to the Deligne conjecture. Moreover, rigidity requirements for categories that can be extracted from a modular functor will be studied systematically using cyclic and modular operads and results of Costello and Giansiracusa. This will lead to a vast generalization of existing string-net techniques, namely string-net complexes for any pivotal Grothendieck-Verdier category in the sense of Boyarchenko-Drinfeld. These string-net complexes can be used to compute differential graded conformal blocks for modular categories which are the Drinfeld center of a spherical pivotal finite tensor category and to create a link to Morrison-Walker blob homology.
The key techniques that I will learn during the fellowship involve graph models for mapping class group actions and multiplicative structures on Hochschild complexes. My host Nathalie Wahl is an expert in these areas.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2020

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

KOBENHAVNS UNIVERSITET
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 207 312,00
Indirizzo
NORREGADE 10
1165 KOBENHAVN
Danimarca

Mostra sulla mappa

Regione
Danmark Hovedstaden Byen København
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 207 312,00
Il mio fascicolo 0 0