Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Non-semisimple differential graded modular functors

Opis projektu

Poprawa zrozumienia topologicznego nie-półprostych kategorii modularnych

Kategorie modularne są strukturami algebraicznymi powszechnie występującymi w wielu gałęziach matematyki, w tym topologicznej kwantowej teorii pola i konforemnej teorii pola. Teorię kategorii modularnych stosuje się do badania symetrii kwantowej i topologicznych faz materii. Tak zwane półproste kategorie modularne zostały dobrze opisane w kontekście trójwymiarowej topologicznej teorii pola. Niestety tego samego nie można już powiedzieć o nie-półprostych kategoriach modularnych. Dzięki wsparciu z działania „Maria Skłodowska-Curie” badacze z projektu Modular Functors chcą wypełnić tę lukę w wiedzy i rozwiązać konkretne problemy związane z opisaniem nie-półprostych kategorii modularnych przy pomocy trójwymiarowej topologicznej teorii pola.

Cel

Non-semisimple differential graded modular functors: While semisimple modular categories can be entirely understood in terms of three-dimensional topological field theory, an equally satisfactory topological understanding of non-semisimple modular categories is not available. The proposed project will solve concrete problems related to the topological understanding of non-semisimple modular categories by unraveling within a homotopy coherent framework the relation between the homological algebra of a modular category (in particular, its Hochschild complex) and low-dimensional topology. The backbone of this approach is the differential graded modular functor associated to any modular category (a consistent system of projective mapping class group representations on chain complexes satisfying excision) that I have recently established in joint work with Schweigert. Among the concrete objectives is a generalization of the Verlinde formula to a statement about two compatible E_2-structures on the differential graded conformal block for the torus. This will naturally link the Verlinde formula to the Deligne conjecture. Moreover, rigidity requirements for categories that can be extracted from a modular functor will be studied systematically using cyclic and modular operads and results of Costello and Giansiracusa. This will lead to a vast generalization of existing string-net techniques, namely string-net complexes for any pivotal Grothendieck-Verdier category in the sense of Boyarchenko-Drinfeld. These string-net complexes can be used to compute differential graded conformal blocks for modular categories which are the Drinfeld center of a spherical pivotal finite tensor category and to create a link to Morrison-Walker blob homology.
The key techniques that I will learn during the fellowship involve graph models for mapping class group actions and multiplicative structures on Hochschild complexes. My host Nathalie Wahl is an expert in these areas.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2020

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

KOBENHAVNS UNIVERSITET
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 207 312,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 207 312,00
Moja broszura 0 0