Descripción del proyecto
Una investigación aporta información nueva sobre la complejidad computacional y descriptiva de los objetos matemáticos
La teoría de estructuras computables cuantifica y estudia la complejidad de las estructuras matemáticas. La forma más común de estudiar la complejidad de estas estructuras es mediante espectros de grados. El objetivo del proyecto ACOSE, financiado por las Acciones Marie Skłodowska-Curie, es mejorar la comprensión de la complejidad computacional y descriptiva de los objetos matemáticos (por ejemplo, estructuras y relaciones) y sus problemas de clasificación asociados. Los investigadores proporcionarán información adicional sobre la relación subestimada entre la complejidad descriptiva de un conjunto y el espectro de grados bajo una relación de equivalencia dada. Las nuevas técnicas desarrolladas podrían ayudar a vincular de forma más fidedigna los campos de la teoría descriptiva de conjuntos y la teoría de estructuras computables.
Objetivo
                                We will investigate the algorithmic complexity of mathematical structures and its connection with notions of complexity studied in descriptive set theory at. The main subject area of the planned research is computable structure theory — an area of logic concerning itself with the computational complexity of countable mathematical structures. Mathematicians usually consider structures up to some equivalence relation. For example, a number theorists works in the standard model of arithmetic, the natural numbers with addition and multiplication, but it is of little interest to him whether he works in the canonic representation or in some isomorphic copy as this does not impact his work.
However, for computational matters the choice of representation is highly important. Therefore one usually measures the algorithmic complexity of a structure by its degree spectrum, the set of Turing degrees of structure equivalent to the structure under a given equivalence relation.
Degree spectra are the main subject of investigation in computable structure theory. A natural way to think of degree spectra is as sets of subsets of the natural numbers, and these sets are studied in descriptive set theory.
So far the relation between the descriptive complexity of a set and whether it can be a degree spectrum under a given equivalence relation has been overlooked. The goal of this project is to relate the descriptive complexity of sets with their realizability as degree spectra under some equivalence relation.
We plan to obtain new results and develop new techniques which will be beneficial to both descriptive set theory and computable structure theory and hope to form a lasting connection between those fields.
The fellowship will be carried out over 36 months, 24 months at the University of California, Berkeley under supervision of Prof. Antonio Montalbán and 12 months at TU Wien under the supervision of Professors Ekaterina Fokina and Matthias Baaz.
                            
                                Ámbito científico (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas:   El vocabulario científico europeo..
                                                
                                            
                                        
                                                                                                
                            
                                                                                                CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
                                Palabras clave
                                
                                    
                                    
                                        Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
                                        
                                    
                                
                            
                            
                        Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
            Programa(s)
            
              
              
                Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
                
              
            
          
                      Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
- 
                  H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
                                      PROGRAMA PRINCIPAL
                                    
 Ver todos los proyectos financiados en el marco de este programa
- 
                  H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
                                    
 Ver todos los proyectos financiados en el marco de este programa
            Tema(s)
            
              
              
                Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
                
              
            
          
                      
                  Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
            Régimen de financiación
            
              
              
                Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
                
              
            
          
                      Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Ver todos los proyectos financiados en el marco de este régimen de financiación
              Convocatoria de propuestas
                
                  
                  
                    Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
                    
                  
                
            
                          Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2020
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
1040 Wien
Austria
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.
 
           
        