Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Understanding cell-nanoparticle interactions through mechanobiology

Project description

Mechanobiology of cell–nanoparticle interactions

The successful clinical translation of nanoparticle-based therapies requires a better understanding of the mechanobiology of cell–nanoparticle interactions to overcome inefficient targeting. Mechanosensing is the ability of cells to sense mechanical cues from their microenvironment that affect the expression of genes involved in the cells’ migration, survival and resistance to drugs. The Hippo signalling pathway controls cell proliferation and apoptosis, and represents an excellent mechanobiology model as it is involved in pathological diseases and tissue regeneration. Funded by the Marie Skłodowska-Curie Actions programme, the MecHA-Nano project aims to study the details of the response of the Hippo pathway upon cell interaction with nanoparticles, paving the way for nanoparticle application as a tune-up tool of mechanosensing.

Objective

The clinical translation of nanoparticle-based therapies over the last decade has been hampered by issues such as
inefficient targeting and limited therapeutic effect. This poor translational outcome calls for deeper understanding of the
biomechanics of cell-nanoparticle (cell-NP) interactions. Indeed, targeting mechanosensing-activated cell pathways is
suitable for tuning cell fate and readdressing its functions, as mechanosensing components control the expression of genes
involved in the cell’s migration, survival and resistance to drugs. Hippo pathway appears to be one of the most promising
mechanobiology pathway, as it is involved in pathological diseases and tissue regeneration. This project aims to address the
response of this pathway on cells upon interaction with nanoparticles. Indeed, tuning cell mechanosensing with
nanoparticles is likely to hold great potentiality to control cell functionalities. The first objective will be the synthesis of
nanoparticles of different size, shape and stiffness, using a silica scaffold coated with hyaluronic acid via metal-phenolic
network assembly with exceptional physicochemical properties. The second objective consists in the application of Superresolution
microscopy for studying cell-NP interactions with unprecedented detail and unveil the interaction/structure/
spatiotemporal localization of mechanosensing components related to the Hippo pathway (i.e. YAP, actin and focal
adhesions) at molecular level. The third objective will be the deep analysis of the molecular biology and biochemistry of
mechanosensing proteins (i.e. YAP, TAZ, RhoA and Rock), and their downstream effectors (i.e. TEAD and transcriptional
factors) involved in the response to cell-NP interaction. The forth objective will pursue the analysis of these interactions using
NenoVision technology (LiteScope), for measuring cell stiffness at the boundary of cell-NP contact with unique resolution.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

FAKULTNI NEMOCNICE U SV ANNY V BRNE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 243 963,60
Address
PEKARSKA 53
602 00 Brno
Czechia

See on map

Region
Česko Jihovýchod Jihomoravský kraj
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 243 963,60

Partners (1)

My booklet 0 0