Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Singularities and symplectic mapping class groups

Ziel

Symplectic topology is a central part of modern geometry, with historical roots in classical mechanics. Symplectic structures also arise naturally in low-dimensional topology, in representation theory, in the study of moduli spaces of algebraic varieties, and in quantum mechanics. A fundamental question is to understand the automorphisms of a symplectic manifold. The most natural ones are symplectomorphisms, i.e. diffeomorphisms preserving the symplectic structure. I propose to study structural properties of their group of isotopy classes, called the symplectic mapping class group (SMCG).

In dimension two, the SMCG agrees with the classical mapping class group; in higher dimensions, our understanding is very sparce. I propose to systematically study SMCGs for the family that I believe to be the key `building blocks? for developing a general theory: smoothings (i.e. Milnor fibres) of isolated singularities.

I first propose to give complete descriptions of categorical analogues of SMCGs for two major, complementary families:
- Milnor fibres of simple elliptic and cusp singularities (Project 1);
- Stein varieties associated to two-variable singularities and quivers (Project 2).
These capture two different generation paradigms: one where the classical story generalises, and one for which it systematically breaks. This will inform Project 3, in which I propose to describe the categorical SMCGs of `universal Milnor fibres', introduced here. Progress on these projects will also bring questions about the dynamics of SMCGs within reach for the first time; Project 4 will study these applications.

The proposed constructions combine insights from different viewpoints on mirror symmetry with ideas from representation theory and singularity theory, and I also plan to apply symplectic ideas to answer classical questions in singularity theory. Beyond this, the proposal borrows ideas from, inter alia, geometric group theory, algebraic geometry, and homological stability.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC - HORIZON ERC Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2021-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

UNIVERSITAT WIEN
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 474 995,00
Adresse
UNIVERSITATSRING 1
1010 WIEN
Österreich

Auf der Karte ansehen

Region
Ostösterreich Wien Wien
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 474 995,00

Begünstigte (1)

Mein Booklet 0 0