Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Singularities and symplectic mapping class groups

Obiettivo

Symplectic topology is a central part of modern geometry, with historical roots in classical mechanics. Symplectic structures also arise naturally in low-dimensional topology, in representation theory, in the study of moduli spaces of algebraic varieties, and in quantum mechanics. A fundamental question is to understand the automorphisms of a symplectic manifold. The most natural ones are symplectomorphisms, i.e. diffeomorphisms preserving the symplectic structure. I propose to study structural properties of their group of isotopy classes, called the symplectic mapping class group (SMCG).

In dimension two, the SMCG agrees with the classical mapping class group; in higher dimensions, our understanding is very sparce. I propose to systematically study SMCGs for the family that I believe to be the key `building blocks? for developing a general theory: smoothings (i.e. Milnor fibres) of isolated singularities.

I first propose to give complete descriptions of categorical analogues of SMCGs for two major, complementary families:
- Milnor fibres of simple elliptic and cusp singularities (Project 1);
- Stein varieties associated to two-variable singularities and quivers (Project 2).
These capture two different generation paradigms: one where the classical story generalises, and one for which it systematically breaks. This will inform Project 3, in which I propose to describe the categorical SMCGs of `universal Milnor fibres', introduced here. Progress on these projects will also bring questions about the dynamics of SMCGs within reach for the first time; Project 4 will study these applications.

The proposed constructions combine insights from different viewpoints on mirror symmetry with ideas from representation theory and singularity theory, and I also plan to apply symplectic ideas to answer classical questions in singularity theory. Beyond this, the proposal borrows ideas from, inter alia, geometric group theory, algebraic geometry, and homological stability.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2021-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

UNIVERSITAT WIEN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 474 995,00
Indirizzo
UNIVERSITATSRING 1
1010 WIEN
Austria

Mostra sulla mappa

Regione
Ostösterreich Wien Wien
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 474 995,00

Beneficiari (1)

Il mio fascicolo 0 0