Description du projet
Renforcer la cybersécurité contre les attaques basées sur l’IA
La sécurité des systèmes numériques est constamment menacée par des attaques. Une façon d’améliorer la cybersécurité consiste à prévoir comment les pirates pourraient manipuler les nouvelles technologies afin de s’introduire dans les systèmes existants. On sait toutefois encore peu de choses sur la façon dont les cybercriminels pourraient tirer parti du domaine émergent de l’apprentissage automatique. Financé par le Conseil européen de la recherche, le projet MALFOY entent déterminer comment les algorithmes d’apprentissage automatique peuvent être utilisés pour découvrir des failles de sécurité et procéder à des attaques informatiques de manière automatique. En se mettant dans la peau de l’attaquant pour explorer les techniques de sécurité offensives, le projet sera ainsi en mesure d’élaborer des mécanismes de défense efficaces.
Objectif
Despite a long series of research, computer attacks still pose a major threat to the security of digital systems. Different malicious actors, such as cybercriminals and intelligence agencies, continuously develop new offensive techniques to evade and outsmart existing defenses. As a result, security research is in a constant arms race and needs to anticipate novel developments as early as possible. However, one of the key technologies of the last years, machine learning, has received very little attention in offensive security so far. The simple question — ''how would a hacker use machine learning?'' — is largely unexplored and there is a striking gap in current research that hinders the anticipation of forthcoming threats. The project Malfoy closes this gap and systematically explores how machine learning can be applied for offensive computer security. By adopting the position of an adversary, we investigate how learning algorithms can be used to find security flaws, generate exploits, and construct computer attacks. To this end, we combine offensive security techniques with modern concepts for discriminative, generative, and reinforcement learning. Our goal is to assess how these techniques can interface with each other and improve their performance through learning. Based on this analysis, we become able to devise completely novel defenses that account for the presence of machine learning in the toolchain of attackers. Despite its offensive nature, the project thus strengthens computer security: First, it explores an uncharted area of research and hence will substantially expand our knowledge about modern computer attacks. Second, the project gives rise to novel and disruptive protection mechanisms, which enable us to move one step ahead of attack development. Finally, the project links two disconnected areas (offensive security and machine learning) and thereby establishes a new branch of joint research.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2021-COG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
10623 Berlin
Allemagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.