Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Machine Learning for Offensive Computer Security

Descrizione del progetto

Potenziamento della sicurezza informatica contro gli attacchi basati sull’intelligenza artificiale

La sicurezza dei sistemi digitali è costantemente minacciata da attacchi. Un modo per migliorare la sicurezza informatica è prevedere come i criminali informatici potrebbero manipolare le nuove tecnologie per penetrare nei sistemi esistenti. Tuttavia, si sa ancora poco su come questi criminali potrebbero sfruttare il campo emergente dell’apprendimento automatico. Finanziato dal Consiglio europeo della ricerca, il progetto MALFOY si propone di stabilire in che modo gli algoritmi di apprendimento automatico possano essere utilizzati per scoprire le falle di sicurezza ed eseguire automaticamente attacchi informatici. Assumendo il ruolo dell’aggressore per esplorare tecniche di sicurezza offensive, il progetto sarà in grado di costruire meccanismi di difesa efficaci.

Obiettivo

Despite a long series of research, computer attacks still pose a major threat to the security of digital systems. Different malicious actors, such as cybercriminals and intelligence agencies, continuously develop new offensive techniques to evade and outsmart existing defenses. As a result, security research is in a constant arms race and needs to anticipate novel developments as early as possible. However, one of the key technologies of the last years, machine learning, has received very little attention in offensive security so far. The simple question — ''how would a hacker use machine learning?'' — is largely unexplored and there is a striking gap in current research that hinders the anticipation of forthcoming threats. The project Malfoy closes this gap and systematically explores how machine learning can be applied for offensive computer security. By adopting the position of an adversary, we investigate how learning algorithms can be used to find security flaws, generate exploits, and construct computer attacks. To this end, we combine offensive security techniques with modern concepts for discriminative, generative, and reinforcement learning. Our goal is to assess how these techniques can interface with each other and improve their performance through learning. Based on this analysis, we become able to devise completely novel defenses that account for the presence of machine learning in the toolchain of attackers. Despite its offensive nature, the project thus strengthens computer security: First, it explores an uncharted area of research and hence will substantially expand our knowledge about modern computer attacks. Second, the project gives rise to novel and disruptive protection mechanisms, which enable us to move one step ahead of attack development. Finally, the project links two disconnected areas (offensive security and machine learning) and thereby establishes a new branch of joint research.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2021-COG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

TECHNISCHE UNIVERSITAT BERLIN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 962 000,00
Indirizzo
STRASSE DES 17 JUNI 135
10623 Berlin
Germania

Mostra sulla mappa

Regione
Berlin Berlin Berlin
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 962 000,00

Beneficiari (2)

Il mio fascicolo 0 0