Projektbeschreibung
Wie beeinflussen Pflanzenzellwände die Koevolution von Pflanzen und Mikroben?
Die Pflanzenzellwand ist eine komplexe Struktur, die im Laufe des Lebenszyklus einer Pflanze mehreren Funktionen dient. Das EU-finanzierte Projekt DYNWALL hinterfragt die Annahme, dass diese Wand als Barriere fungiert, die die Zellen als Reaktion auf biotischen Stress schützt. Das Team baut dabei auf der Arbeit von Forschenden auf, die am Projekt beteiligt waren. Unter Verwendung von Arabidopsis thaliana als Modellpflanze und Fusarium oxysporum als Erreger für Wurzeln fanden sie heraus, dass die Pflanzenzelle nicht als statische Barriere dient. Mit Ansätzen aus Molekularbiologie, Biochemie, biomedizinischer Bildgebung und Genetik werden die Forschenden nun bahnbrechende Einblicke in die molekularen Mechanismen offenbaren, die der Regulierung der inhärenten Immunsignalgebung in Pflanzen zugrunde liegen. Ihre Arbeit wird auch unser Wissen zu den allgemeinen Mechanismen, die Wechselwirkungen zwischen Pflanzen und Mikroben außerhalb der Plasmamembranen kontrollieren, vertiefen.
Ziel
Plants have a strong yet extensible wall as their outermost layer, which is indispensable for the survival of the cell and permits cell adhesion. The plant cell wall (CW) plays an essential role in response to biotic stress, as it constitutes the first contact substrate for microbes. Our findings using the model pathosystem consisting of the plant Arabidopsis thaliana and a root pathogen that can infect it, Fusarium oxysporum (Fo), confirm that the plant CW is not the static barrier it has been seen as until recently. On the contrary, based on our preliminary data, we hypothesize that plant CW remodeling at the subcellular level plays an essential role in the outcome of the plant-microbe interaction, which might explain the sophisticated mechanisms of plant-endophyte (pathogen, neutral or beneficial) co-evolution. Our work has established a foundation of tools that provide a timely and unprecedented opportunity to test this idea. We aim to elucidate the role of root-specific CW composition and its dynamic changes in root-Fo interaction. Then, we will use this knowledge to modulate the CW properties of the root cell layers to reduce Fo pathogenesis while maintaining beneficial endophytism. Through a unique combination of well-established and high-risk/high-gain molecular, biochemical, bioimaging, and genetics approaches, this project will provide groundbreaking insights not only into the molecular mechanisms underlying CW-dependent establishment and regulation of innate immune signaling in plants, but also into general mechanisms that control plant-microbe interaction outside the plasma membranes. The knowledge gained from this work will advance our current understanding of plant-microbe co-evolution. In addition, we will generate innovative methodologies that will be applicable in designing strategies to reduce damage caused by vascular pathogens in crops.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
- NaturwissenschaftenBiowissenschaftenEvolutionsbiologie
- AgrarwissenschaftenLandwirtschaft, Forstwirtschaft und FischereiLandwirtschaft
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Schlüsselbegriffe
Programm/Programme
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thema/Themen
Finanzierungsplan
HORIZON-ERC - HORIZON ERC GrantsGastgebende Einrichtung
28006 Madrid
Spanien