Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Groups Of Algebraic Transformations

Descripción del proyecto

Estudio de grupos de transformaciones algebraicas en espacios de alta dimensión

Durante el último decenio, se ha logrado un avance significativo en el estudio de estructuras algebraicas de grupos de transformaciones birracionales. Sin embargo, aún no se comprende del todo estos grupos en dimensiones superiores a dos. El objetivo del proyecto GOAT, financiado con fondos europeos, es estudiar grupos de transformaciones algebraicas de variedades de dimensiones superiores, centrándose en sus propiedades dinámicas, algebraicas y geométricas.

Objetivo

During the last decade, spectacular achievements have been performed in the study of groups of birational transformations of algebraic varieties. We now have a detailed understanding of such groups in dimension 2.

Far less is known in higher dimensions, but the last five years saw the birth of a large array of techniques that apply in arbitrary dimensions. They include powerful tools from p-adic analysis, isometries of CAT(0) cube complexes, pluripotential theory, and algebraic geometry. Simultaneously, recent arithmetic equidistribution theorems have been combined with holomorphic dynamics to solve problems of unlikely intersection in the dynamics of polynomial maps and to study parameter spaces of such maps. The novelty of this proposal will be to combine these recent advances coming from two active sujects.

I propose to develop a global study of groups of algebraic transformations of higher dimensional varieties, both from the dynamical and the
algebro-geometric viewpoints. I have been developing this program progressively during the last ten years. Moving to higher dimensions is crucial to broaden the range of applications and is now possible with the advances mentioned above.

The first leitmotif will be the large scale geometry of groups of birational transformations. The second will be the dynamics of natural actions of such groups on families of geometric objects, notably on families of rational surfaces and on character varieties.
There a three long term goals: (a) to extend some of the geometric features of linear groups to all groups acting faithfully by algebraic transformations (this includes the mapping class groups of closed surfaces, for instance); (b) to compare the geometry of distinct (rationally connected) varieties through a comparison of their groups of birational transformations; (c) to get new properties of families of geometric objects (such as rational surfaces) via dynamics in their parameter or Teichmller spaces.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Régimen de financiación

HORIZON-ERC - HORIZON ERC Grants

Institución de acogida

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Aportación neta de la UEn
€ 1 439 368,75
Dirección
RUE MICHEL ANGE 3
75794 Paris
Francia

Ver en el mapa

Región
Ile-de-France Ile-de-France Hauts-de-Seine
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 1 709 395,00

Beneficiarios (2)