Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Groups Of Algebraic Transformations

Descrizione del progetto

Uno studio approfondisce i gruppi di trasformazione algebrica negli spazi ad alta dimensionalità

Nell’ultimo decennio sono stati compiuti progressi significativi nello studio delle strutture algebriche dei gruppi di trasformazioni birazionali. Tuttavia, manca una comprensione dettagliata di tali gruppi nelle dimensioni superiori a 2. Il progetto GOAT, finanziato dall’UE, intende studiare i gruppi di trasformazioni algebriche delle varietà di dimensionalità più elevate, con particolare attenzione alle loro dinamiche e alle proprietà algebriche e geometriche.

Obiettivo

During the last decade, spectacular achievements have been performed in the study of groups of birational transformations of algebraic varieties. We now have a detailed understanding of such groups in dimension 2.

Far less is known in higher dimensions, but the last five years saw the birth of a large array of techniques that apply in arbitrary dimensions. They include powerful tools from p-adic analysis, isometries of CAT(0) cube complexes, pluripotential theory, and algebraic geometry. Simultaneously, recent arithmetic equidistribution theorems have been combined with holomorphic dynamics to solve problems of unlikely intersection in the dynamics of polynomial maps and to study parameter spaces of such maps. The novelty of this proposal will be to combine these recent advances coming from two active sujects.

I propose to develop a global study of groups of algebraic transformations of higher dimensional varieties, both from the dynamical and the
algebro-geometric viewpoints. I have been developing this program progressively during the last ten years. Moving to higher dimensions is crucial to broaden the range of applications and is now possible with the advances mentioned above.

The first leitmotif will be the large scale geometry of groups of birational transformations. The second will be the dynamics of natural actions of such groups on families of geometric objects, notably on families of rational surfaces and on character varieties.
There a three long term goals: (a) to extend some of the geometric features of linear groups to all groups acting faithfully by algebraic transformations (this includes the mapping class groups of closed surfaces, for instance); (b) to compare the geometry of distinct (rationally connected) varieties through a comparison of their groups of birational transformations; (c) to get new properties of families of geometric objects (such as rational surfaces) via dynamics in their parameter or Teichmller spaces.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Meccanismo di finanziamento

HORIZON-ERC -

Istituzione ospitante

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contributo netto dell'UE
€ 1 439 368,75
Indirizzo
RUE MICHEL ANGE 3
75794 Paris
Francia

Mostra sulla mappa

Regione
Ile-de-France Ile-de-France Hauts-de-Seine
Tipo di attività
Organizzazioni di ricerca
Collegamenti
Costo totale
€ 1 709 395,00

Beneficiari (2)