Descrizione del progetto
Uno studio approfondisce i gruppi di trasformazione algebrica negli spazi ad alta dimensionalità
Nell’ultimo decennio sono stati compiuti progressi significativi nello studio delle strutture algebriche dei gruppi di trasformazioni birazionali. Tuttavia, manca una comprensione dettagliata di tali gruppi nelle dimensioni superiori a 2. Il progetto GOAT, finanziato dall’UE, intende studiare i gruppi di trasformazioni algebriche delle varietà di dimensionalità più elevate, con particolare attenzione alle loro dinamiche e alle proprietà algebriche e geometriche.
Obiettivo
During the last decade, spectacular achievements have been performed in the study of groups of birational transformations of algebraic varieties. We now have a detailed understanding of such groups in dimension 2.
Far less is known in higher dimensions, but the last five years saw the birth of a large array of techniques that apply in arbitrary dimensions. They include powerful tools from p-adic analysis, isometries of CAT(0) cube complexes, pluripotential theory, and algebraic geometry. Simultaneously, recent arithmetic equidistribution theorems have been combined with holomorphic dynamics to solve problems of unlikely intersection in the dynamics of polynomial maps and to study parameter spaces of such maps. The novelty of this proposal will be to combine these recent advances coming from two active sujects.
I propose to develop a global study of groups of algebraic transformations of higher dimensional varieties, both from the dynamical and the
algebro-geometric viewpoints. I have been developing this program progressively during the last ten years. Moving to higher dimensions is crucial to broaden the range of applications and is now possible with the advances mentioned above.
The first leitmotif will be the large scale geometry of groups of birational transformations. The second will be the dynamics of natural actions of such groups on families of geometric objects, notably on families of rational surfaces and on character varieties.
There a three long term goals: (a) to extend some of the geometric features of linear groups to all groups acting faithfully by algebraic transformations (this includes the mapping class groups of closed surfaces, for instance); (b) to compare the geometry of distinct (rationally connected) varieties through a comparison of their groups of birational transformations; (c) to get new properties of families of geometric objects (such as rational surfaces) via dynamics in their parameter or Teichmller spaces.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-ERC - HORIZON ERC Grants
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2021-ADG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
75794 PARIS
Francia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.