Projektbeschreibung
Studie untersucht algebraische Transformationsgruppen in hochdimensionalen Räumen
Im letzten Jahrzehnt konnten bedeutende Fortschritte bei der Untersuchung algebraischer Strukturen von Gruppen birationaler Transformationen erzielt werden. Es fehlt jedoch am detaillierten Verständnis derartiger Gruppen für Dimensionen, die höher als zwei sind. Das Ziel des EU-finanzierten Projekts GOAT besteht in der Untersuchung von Gruppen algebraischer Transformationen höherdimensionaler Varietäten, wobei deren dynamische sowie algebraische und geometrische Eigenschaften den Schwerpunkt bilden.
Ziel
During the last decade, spectacular achievements have been performed in the study of groups of birational transformations of algebraic varieties. We now have a detailed understanding of such groups in dimension 2.
Far less is known in higher dimensions, but the last five years saw the birth of a large array of techniques that apply in arbitrary dimensions. They include powerful tools from p-adic analysis, isometries of CAT(0) cube complexes, pluripotential theory, and algebraic geometry. Simultaneously, recent arithmetic equidistribution theorems have been combined with holomorphic dynamics to solve problems of unlikely intersection in the dynamics of polynomial maps and to study parameter spaces of such maps. The novelty of this proposal will be to combine these recent advances coming from two active sujects.
I propose to develop a global study of groups of algebraic transformations of higher dimensional varieties, both from the dynamical and the
algebro-geometric viewpoints. I have been developing this program progressively during the last ten years. Moving to higher dimensions is crucial to broaden the range of applications and is now possible with the advances mentioned above.
The first leitmotif will be the large scale geometry of groups of birational transformations. The second will be the dynamics of natural actions of such groups on families of geometric objects, notably on families of rational surfaces and on character varieties.
There a three long term goals: (a) to extend some of the geometric features of linear groups to all groups acting faithfully by algebraic transformations (this includes the mapping class groups of closed surfaces, for instance); (b) to compare the geometry of distinct (rationally connected) varieties through a comparison of their groups of birational transformations; (c) to get new properties of families of geometric objects (such as rational surfaces) via dynamics in their parameter or Teichmller spaces.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2021-ADG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
75794 PARIS
Frankreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.