Opis projektu
Badacze przyglądają się algebraicznym grupom przekształceń w przestrzeniach wielowymiarowych
W ciągu ostatniego dziesięciolecia nastąpił duży postęp w zakresie badań nad strukturami algebraicznymi grup przekształceń biracjonalnych. Jednak badacze wciąż nie rozumieją wielu aspektów dotyczących tych grup w przestrzeniach wielowymiarowych. Celem finansowanego ze środków UE projektu GOAT jest zbadanie algebraicznych grup przekształceń w przestrzeniach wielowymiarowych ze szczególnym uwzględnieniem ich właściwości dynamicznych, algebraicznych i geometrycznych.
Cel
During the last decade, spectacular achievements have been performed in the study of groups of birational transformations of algebraic varieties. We now have a detailed understanding of such groups in dimension 2.
Far less is known in higher dimensions, but the last five years saw the birth of a large array of techniques that apply in arbitrary dimensions. They include powerful tools from p-adic analysis, isometries of CAT(0) cube complexes, pluripotential theory, and algebraic geometry. Simultaneously, recent arithmetic equidistribution theorems have been combined with holomorphic dynamics to solve problems of unlikely intersection in the dynamics of polynomial maps and to study parameter spaces of such maps. The novelty of this proposal will be to combine these recent advances coming from two active sujects.
I propose to develop a global study of groups of algebraic transformations of higher dimensional varieties, both from the dynamical and the
algebro-geometric viewpoints. I have been developing this program progressively during the last ten years. Moving to higher dimensions is crucial to broaden the range of applications and is now possible with the advances mentioned above.
The first leitmotif will be the large scale geometry of groups of birational transformations. The second will be the dynamics of natural actions of such groups on families of geometric objects, notably on families of rational surfaces and on character varieties.
There a three long term goals: (a) to extend some of the geometric features of linear groups to all groups acting faithfully by algebraic transformations (this includes the mapping class groups of closed surfaces, for instance); (b) to compare the geometry of distinct (rationally connected) varieties through a comparison of their groups of birational transformations; (c) to get new properties of families of geometric objects (such as rational surfaces) via dynamics in their parameter or Teichmller spaces.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.1 - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-ERC - HORIZON ERC Grants
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2021-ADG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
75794 PARIS
Francja
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.