Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Formalisation of Constructive Univalent Type Theory

Descripción del proyecto

Una forma novedosa de ver objetos matemáticos podría respaldar la demostración interactiva mejorada de teoremas

Si bien la demostración automatizada de teoremas matemáticos puede parecer rebatible para los no son matemáticos, se han logrado grandes avances en los campos de las matemáticas y la informática, que nos acerca relativamente. La demostración interactiva de teoremas es el proceso en el que una persona y un ordenador trabajan juntos para elaborar una demostración formal. También se utiliza para comprobar si existen defectos en programas informáticos. El equipo del proyecto ForCUTT, financiado con fondos europeos, se propone desarrollar una nueva forma de ver los objetos matemáticos que podría constituir la base para el diseño de futuros sistemas de demostración. Esto ampliaría las posibilidades para abordar pruebas matemáticas y sistemas de «software» altamente modulares y complejos.

Objetivo

There has been in the past 15 years remarkable achievements in the field of interactive theorem proving, both for
checking complex software and checking non trivial mathematical proofs.
For software correctness, X. Leroy (INRIA and College de France)
has been leading since 2006 the CompCert project, with a fully verified C compiler.
For mathematical proofs, these systems could handle complex arguments,
such as the proof of the 4 color theorem or the formal proof of Feit-Thompson Theorem
More recently, the Xena project, lead by K. Buzzard, is developing a large library of mathematical facts, and
has been able to help the mathematician P. Scholze (field medalist 2018) to check a highly non trivial proof.

All these examples have been carried out in systems based on the formalism of dependent type theory, and
on early work of the PI. In parallel to these works, also around 15 years ago,
a remarkable and unexpected correspondance was discovered between this formalism
and the abstract study of homotopy theory and higher categorical structures.
A special year 2012-2013 at the Institute of Advance Study (Princeton) was organised by
the late V. Voevodsky (field medalist 2002, Princeton), S. Awodey (CMU) and the PI.
Preliminary results indicate that this research direction is productive,
both for the understanding of dependent type systems and higher category theory, and suggest several crucial
open questions. The objective of this proposal is to analyse these questions, with the ultimate goal
of formulating a new way to look at mathematical objects and potentially a new foundation of mathematics.
This could in turn be crucial for the design of future proof systems able to handle complex highly modular
software systems and mathematical proofs.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo.
La clasificación de este proyecto ha sido validada por su equipo.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2021-ADG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

GOETEBORGS UNIVERSITET
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 2 499 776,00
Dirección
VASAPARKEN
405 30 Goeteborg
Suecia

Ver en el mapa

Región
Södra Sverige Västsverige Västra Götalands län
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 2 499 776,25

Beneficiarios (1)

Mi folleto 0 0