European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Laser biofabrication of 3D multicellular tissue with perfusible vascular network

Descrizione del progetto

Biofabbricazione affidabile di tessuto vascolarizzato in 3D

La costruzione di organi vascolarizzati in 3D rimane la sfida principale della biofabbricazione e dell’ingegneria tissutale. La riproduzione della perfusione vascolare funzionale con arterie e vene di grandi dimensioni e arteriole, venule e capillari su scala micrometrica richiede costrutti multiscala ad alta risoluzione. La combinazione di un’avanzata biostampa a laser con una tecnica di polimerizzazione a due fotoni consente di generare un sistema vascolare completo. Le connessioni di arterie e vene con l’albero vascolare ingegnerizzato sono requisiti essenziali per un sistema di flusso pulsatile affidabile. Il progetto Laser-Tissue-Perfuse, finanziato dall’UE, mira a generare un albero capillare vascolare 3D con la perfusione in costrutti di tessuto cardiaco e cutaneo su scala centimetrica utilizzando metodologie di biofabbricazione sviluppate per svariate applicazioni nel campo della medicina rigenerativa.

Obiettivo

Building 3D vascularised organs remains the major unsolved challenge to be overcome in biofabrication and tissue engineering. Establishing blood vessels capable of efficient transport of gas, nutrients, and metabolites to and from cells is a prerequisite for the survival of tissue constructs, both in vitro and when transplanted in vivo. High resolution multi-scale constructs are necessary to replicate the complexity of functional vascular perfusion from large scale arteries and veins to micron scale arterioles, venules and capillaries. Using a unique combination of advanced laser bioprinting with two-photon polymerisation technique a full vascular system may be generated by exploring different scaffold-based, scaffold-free, sacrificial, and hybrid approaches for the generation of a complex vasculature with functional layers and extra-cellular matrix.
The connection of artery and vein with engineered vascular tree including capillaries have received little research attention despite the crucial requirement to reliably connect perfusion inlets and outlets to a pulsatile flow system. This is essential not only to perfuse tissue, but to stimulate and control maturation of engineered tissue in reaching the condition required to function with realistic biophysical characteristics of thick tissue outside of a closed incubation chamber. Computer-controlled generation of a 3D vascular capillary tree and achieving its perfusion in centimetre scale cardiac and skin tissue constructs using the developed biofabrication methodologies will represent a seminal breakthrough in organ regeneration with widespread long-term impacts across the field of regenerative medicine.

Istituzione ospitante

GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Contribution nette de l'UE
€ 1 702 036,50
Indirizzo
WELFENGARTEN 1
30167 Hannover
Germania

Mostra sulla mappa

Regione
Niedersachsen Hannover Region Hannover
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 702 036,50

Beneficiari (2)