Descripción del proyecto
El esquema de Jordan-Kinderlehrer-Otto: ecuaciones diferenciales parciales y estrategias numéricas
El muestreo real de la evolución de los parámetros en el tiempo convierte las variables analógicas o continuas en discretas, lo cual reduce la demanda de memoria y mejora la eficiencia computacional. Ocurre lo mismo con la discretización de muchas funciones matemáticas. El esquema de Jordan-Kinderlehrer-Otto (JKO) es un procedimiento para encontrar aproximaciones discretas en el tiempo de soluciones de ecuaciones de difusión y permite la aproximación de soluciones en una amplia clase de ecuaciones diferenciales parciales (EDP). El equipo del proyecto EYAWKAJKOS, financiado por el Consejo Europeo de Investigación, aplicará el esquema de JKO a sistemas de EDP tanto conocidos como menos conocidos. Los resultados también pueden ayudar a reducir la complejidad computacional o mejorar la calidad de convergencia de los esquemas numéricos, lo cual apoya la modelización de diversos fenómenos.
Objetivo
The project deals with the so-called Jordan-Kinderlehrer-Otto scheme, a time-discretization procedure consisting in a sequence of
iterated optimization problems involving the Wasserstein distance W_2 between probability measures. This scheme allows to
approximate the solutions of a wide class of PDEs (including many diffusion equations with possible aggregation effects) which have
a variational structure w.r.t. the distance W_2 but not w.r.t. Hilbertian distances. It has been used both for theoretical purposes
(proving existence of solutions for new equations and studying their properties) and for numerical applications. Indeed, it naturally
provides a time-discretization and, if coupled with efficient computational techniques for optimal transport problems, can be used for
numerics.
This project will cover both equations which are well-studied (Fokker-Planck, for instance) and less classical ones (higher-order
equations, crowd motion, cross-diffusion, sliced Wasserstein flow...). For the most classical ones, we will systematically consider
estimates and properties which are known for solutions of the continuous-in-time PDEs and try to prove sharp and equivalent
analogues in the discrete setting: some of these results (L^p, Sobolev, BV...) have already been proven in the simplest cases ; the
results in the classical case will provide techniques to be applied to the other equations, allowing to prove existence of solutions and
to study their qualitative properties. Moreover, some estimates proven on each step of the JKO scheme can provide useful
information for the numerical schemes, reducing the computational complexity or improving the quality of the convergence.
During the project, the study of the JKO scheme will be of course coupled with a deep study of the corresponding continuous-in-time
PDEs, with the effort to produce efficient numerical strategies, and with the attention to the modeling of other phenomena which
could take advantage of this techniques.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras análisis matemático ecuaciones diferenciales ecuaciones diferenciales parciales
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-ERC - HORIZON ERC Grants
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2021-ADG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
69622 Villeurbanne Cedex
Francia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.