Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Geometric and Low-regularity Integrators for the Matching and Preservation of Structure in the computation of dispersive Equations

Project description

How integrators could enhance computation of dispersive equations

A geometric integrator is a numerical method that preserves the geometric properties of the exact flow of a differential equation. Some of nature’s most fascinating phenomena, such as shock waves and the breaking of ocean waves at the shore, are mathematically best described using discontinuities (low regularity). However, there are few methods that can perform well in low-regularity regimes and at the same time preserve the geometric structure of the underlying differential equation. Funded by the Marie Skłodowska-Curie Actions programme, the GLIMPSE project will address this need for structure-preserving, low-regularity integrators for dispersive partial differential equations. If successful, numerical methods developed in GLIMPSE could be used to improve simulations used in weather forecasting and disaster prevention from extreme ocean events.

Objective

If mathematics is the language of physical sciences, differential equations are their grammar. Yet, to understand them, we need computational algorithms. Some of the most intriguing phenomena in nature arise when the underlying physical laws can be described using nonlinear dispersive partial differential equations. This means that waves of different frequencies travel at different speeds -- a mechanism that is, for instance, responsible for the breaking of ocean waves near the shore. When a computer is asked to approximate solutions that exhibit discontinuities (low-regularity), as is the case for instance in shock waves, these nonlinear frequency interactions pose a significant challenge which has recently been addressed by the development of so-called resonance-based numerical schemes. In many applications, it is desirable to apply geometric numerical integrators -- algorithms that preserve geometric structure of the underlying equation such as conservation of energy or time reversibility. However, there is only a very limited set of methods available that can address both challenges in unison, i.e. perform well in low-regularity regimes and preserve geometric structure of the underlying differential equation. Such algorithms, if more widely developed, would provide a valuable tool for a range of applications, including extreme events in ocean waves and atmospheric models. The goal of this proposed research is to address this need for structure-preserving low-regularity integrators for dispersive partial differential equations. The proposed project lies at the interface of computational mathematics, analysis and physical applications and, if successful, the results of this proposal have the potential to enhance both our current understanding of numerics for dispersive equations and, in the medium term, improve practical simulations which are used in weather forecasting and efficient disaster prevention from extreme ocean events.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

SORBONNE UNIVERSITE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 156 088,16
Address
21 RUE DE L'ECOLE DE MEDECINE
75006 PARIS
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0