Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Geometric and Low-regularity Integrators for the Matching and Preservation of Structure in the computation of dispersive Equations

Description du projet

Comment les intégrateurs pourraient améliorer le calcul des équations dispersives

Un intégrateur géométrique est une méthode numérique qui préserve les propriétés géométriques de l’écoulement exact d’une équation différentielle. Certains des phénomènes les plus fascinants de la nature, comme les ondes de choc et le déferlement des vagues de l’océan sur le rivage, sont mathématiquement mieux décrits à l’aide de discontinuités (faible régularité). Cependant, il existe peu de méthodes capables d’être performantes dans les régimes de faible régularité et de préserver en même temps la structure géométrique de l’équation différentielle sous-jacente. Financé par le programme Actions Marie Skłodowska-Curie, le projet GLIMPSE répondra à ce besoin d’intégrateurs à faible régularité et préservant la structure pour les équations aux dérivées partielles dispersives. En cas de succès, les méthodes numériques développées dans le cadre de GLIMPSE pourraient être utilisées pour améliorer les simulations utilisées dans les prévisions météorologiques et la prévention des catastrophes dues à des événements océaniques extrêmes.

Objectif

If mathematics is the language of physical sciences, differential equations are their grammar. Yet, to understand them, we need computational algorithms. Some of the most intriguing phenomena in nature arise when the underlying physical laws can be described using nonlinear dispersive partial differential equations. This means that waves of different frequencies travel at different speeds -- a mechanism that is, for instance, responsible for the breaking of ocean waves near the shore. When a computer is asked to approximate solutions that exhibit discontinuities (low-regularity), as is the case for instance in shock waves, these nonlinear frequency interactions pose a significant challenge which has recently been addressed by the development of so-called resonance-based numerical schemes. In many applications, it is desirable to apply geometric numerical integrators -- algorithms that preserve geometric structure of the underlying equation such as conservation of energy or time reversibility. However, there is only a very limited set of methods available that can address both challenges in unison, i.e. perform well in low-regularity regimes and preserve geometric structure of the underlying differential equation. Such algorithms, if more widely developed, would provide a valuable tool for a range of applications, including extreme events in ocean waves and atmospheric models. The goal of this proposed research is to address this need for structure-preserving low-regularity integrators for dispersive partial differential equations. The proposed project lies at the interface of computational mathematics, analysis and physical applications and, if successful, the results of this proposal have the potential to enhance both our current understanding of numerics for dispersive equations and, in the medium term, improve practical simulations which are used in weather forecasting and efficient disaster prevention from extreme ocean events.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2021-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

SORBONNE UNIVERSITE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 156 088,16
Adresse
21 RUE DE L'ECOLE DE MEDECINE
75006 PARIS
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0