Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Geometric and Low-regularity Integrators for the Matching and Preservation of Structure in the computation of dispersive Equations

Descripción del proyecto

Cómo los integradores podrían mejorar el cálculo de ecuaciones dispersivas

Un integrador geométrico es un método numérico que conserva las propiedades geométricas del flujo exacto de una ecuación diferencial. Algunos de los fenómenos más sorprendentes de la naturaleza, como las ondas de choque y el impacto de las olas del mar con la costa, se describen mejor matemáticamente con discontinuidades (regularidad baja). Sin embargo, existen pocos métodos que puedan funcionar bien en regímenes de baja regularidad y, al mismo tiempo, preservar la estructura geométrica de la ecuación diferencial subyacente. En el proyecto GLIMPSE, financiado por las Acciones Marie Skłodowska-Curie, se abordará esta necesidad de integradores de baja regularidad que preserven la estructura para ecuaciones diferenciales parciales dispersivas. Si se logra esto, los métodos numéricos desarrollados en GLIMPSE podrían emplearse para mejorar las simulaciones utilizadas en la previsión meteorológica y la prevención de desastres causados por fenómenos oceánicos extremos.

Objetivo

If mathematics is the language of physical sciences, differential equations are their grammar. Yet, to understand them, we need computational algorithms. Some of the most intriguing phenomena in nature arise when the underlying physical laws can be described using nonlinear dispersive partial differential equations. This means that waves of different frequencies travel at different speeds -- a mechanism that is, for instance, responsible for the breaking of ocean waves near the shore. When a computer is asked to approximate solutions that exhibit discontinuities (low-regularity), as is the case for instance in shock waves, these nonlinear frequency interactions pose a significant challenge which has recently been addressed by the development of so-called resonance-based numerical schemes. In many applications, it is desirable to apply geometric numerical integrators -- algorithms that preserve geometric structure of the underlying equation such as conservation of energy or time reversibility. However, there is only a very limited set of methods available that can address both challenges in unison, i.e. perform well in low-regularity regimes and preserve geometric structure of the underlying differential equation. Such algorithms, if more widely developed, would provide a valuable tool for a range of applications, including extreme events in ocean waves and atmospheric models. The goal of this proposed research is to address this need for structure-preserving low-regularity integrators for dispersive partial differential equations. The proposed project lies at the interface of computational mathematics, analysis and physical applications and, if successful, the results of this proposal have the potential to enhance both our current understanding of numerics for dispersive equations and, in the medium term, improve practical simulations which are used in weather forecasting and efficient disaster prevention from extreme ocean events.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2021-PF-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

SORBONNE UNIVERSITE
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 156 088,16
Dirección
21 RUE DE L'ECOLE DE MEDECINE
75006 PARIS
Francia

Ver en el mapa

Región
Ile-de-France Ile-de-France Paris
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0