Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Geometric and Low-regularity Integrators for the Matching and Preservation of Structure in the computation of dispersive Equations

Opis projektu

Jak integratory mogą usprawnić obliczanie równań dyspersyjnych?

Geometryczny integrator jest metodą numeryczną, która zachowuje geometryczne właściwości przepływu równania różniczkowego. Niektóre z najbardziej fascynujących zjawisk w przyrodzie, takie jak fale uderzeniowe czy rozbijanie się fal oceanicznych przy brzegu, można opisać matematycznie przy pomocy nieciągłości o niskiej regularności. Nie istnieje jednak wiele metod, które oferują dobre rezultaty w warunkach niskiej nieregularności i jednocześnie zachowują geometryczną strukturę leżącego u ich podstaw równania różniczkowego. Projekt GLIMPSE finansowany w ramach działania „Maria Skłodowska-Curie” zajmie się poszukiwaniem zachowujących strukturę integratorów charakteryzujących się niską regularnością na potrzeby dyspersyjnych równań różniczkowych cząstkowych. W przypadku powodzenia, metody numeryczne opracowane w ramach projektu GLIMPSE znajdą zastosowanie do usprawnienia symulacji stosowanych w prognozowaniu pogody i zapobieganiu katastrofom związanym z ekstremalnymi zjawiskami oceanicznymi.

Cel

If mathematics is the language of physical sciences, differential equations are their grammar. Yet, to understand them, we need computational algorithms. Some of the most intriguing phenomena in nature arise when the underlying physical laws can be described using nonlinear dispersive partial differential equations. This means that waves of different frequencies travel at different speeds -- a mechanism that is, for instance, responsible for the breaking of ocean waves near the shore. When a computer is asked to approximate solutions that exhibit discontinuities (low-regularity), as is the case for instance in shock waves, these nonlinear frequency interactions pose a significant challenge which has recently been addressed by the development of so-called resonance-based numerical schemes. In many applications, it is desirable to apply geometric numerical integrators -- algorithms that preserve geometric structure of the underlying equation such as conservation of energy or time reversibility. However, there is only a very limited set of methods available that can address both challenges in unison, i.e. perform well in low-regularity regimes and preserve geometric structure of the underlying differential equation. Such algorithms, if more widely developed, would provide a valuable tool for a range of applications, including extreme events in ocean waves and atmospheric models. The goal of this proposed research is to address this need for structure-preserving low-regularity integrators for dispersive partial differential equations. The proposed project lies at the interface of computational mathematics, analysis and physical applications and, if successful, the results of this proposal have the potential to enhance both our current understanding of numerics for dispersive equations and, in the medium term, improve practical simulations which are used in weather forecasting and efficient disaster prevention from extreme ocean events.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2021-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

SORBONNE UNIVERSITE
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 156 088,16
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0