Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Edged Crystalline Cohomology

Projektbeschreibung

Erweiterung der starren Kohomologie zu einer vollständigeren Theorie

Die starre Kohomologie ist eine p-adische Kohomologie-Theorie, die von Berthelot eingeführt wurde und die kristalline Kohomologie auf Schemata erweitert, die weder ordnungsgemäß noch glatt sein müssen. Die größte Schwäche dieser Theorie besteht in der Schwierigkeit der Durchführung klassischer geometrischer Operationen. Grund dafür ist die Tatsache, dass die Definitionen der Kohomologie auf Differentialformen beruhen, die Glattheit voraussetzen. Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen finanzierte Projekt ECrys wird die kantige kristalline Seite nutzen, die eine alternative Definition für starre Kohomologie und überkonvergente Isokristalle bietet. Diese Definition wird dazu dienen, die Berthelot-Vermutung zu beweisen.

Ziel

This proposed project aims at opening new horizons in Grothendieck and Berthelot's theories of crystalline and rigid cohomology. These are p-adic cohomology theories that are used to study algebraic varieties in positive characteristic. In the last years, the subject has seen an incredible development. Recent important achievements have been, for example, Kedlaya's new proof of the Riemann Hypothesis in positive characteristic and Abe's construction of a p-adic Langlands correspondence for overconvergent F-isocrystals. On the other hand, there are still some fundamental open questions. The main weakness of the theory of rigid cohomology is the difficulty of performing classical geometric operations. For example, it is not known whether the direct image functors have all the desirable propreties (Berthelot's conjecture). This is mainly due to the fact that the definitions rely on differential forms, which need smoothness assumptions to be defined. The Applicant D'Addezio wants to use the edged crystalline site, a new site that he has recently constructed, to solve this issue. In particular, he wants to show that the edged crystalline site gives an alternative new definition of rigid cohomology and overconvergent isocrystals and then use this to prove Berthelot's conjecture. For this second step, he will exploit the fact that the definition of the edged crystalline site is completely algebraic. Other applications that will be developped include the construction of an integral structure for rigid cohomology and the construction of the category of F-isocrystals with log-decay for smooth varieties of arbitrary dimension (extending the results of Kramer--Miller).

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) HORIZON-MSCA-2021-PF-01

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 195 914,88
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Partner (1)

Mein Booklet 0 0