Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

TRAnsparent InterpretabLe robots

Project description

Training robotics experts

The TRAIL project strategically focuses on a novel, highly interdisciplinary and cross-sectorial research and training programme for a better understanding of transparency in deep learning, artificial intelligence and robotics systems. In order to train a new generation of doctoral candidates to become experts in the design and implementation of transparent, interpretable neural systems and robots, we have built a highly interdisciplinary consortium, containing expert partners with long-standing expertise in cutting-edge artificial intelligence and robotics, including deep neural networks, computer science, mathematics, social robotics, human-robot interaction and psychology. In order to build transparent robotic systems, these new doctoral researchers will learn about the theory and practice of the principles of internal decision understanding and external transparent behaviour.

Objective

TRAIL strategically focuses on a novel, highly interdisciplinary and cross-sectorial research and training programme for a better understanding of transparency in deep learning, artificial intelligence and robotics systems. In order to train a new generation of Doctoral Candidates to become experts in the design and implementation of transparent, interpretable neural systems and robots, we have built a highly interdisciplinary consortium, containing expert partners with long-standing expertise in cutting-edge artificial intelligence and robotics, including deep neural networks, computer science, mathematics, social robotics, human-robot interaction and psychology. In order to build transparent robotic systems, these new ESR researchers need to learn about the theory and practice of the principles of (1) internal decision understanding and (2) external transparent behaviour. Since the ability to interpret complex robotic systems needs highly interdisciplinary knowledge, we will start, on the decision level, to interpret deep neural learning and analyse what knowledge can be efficiently extracted. At the same time, on the behaviour level, the disciplines of human-robot interaction and psychology will be key in order to understand how to present the extracted knowledge as behaviour in an intuitive and natural way to a human user to integrate the robot into a cooperative human-robot interaction. A scaffolded training curriculum will guarantee that the ESRs have not only a deep understanding of both research areas, but experience optimal skill training to be fully prepared for a successful research career in academia and industry. The importance and need of this research for the industry is clearly visible with the full commitment of 7 leading European and world-wide-operating robotics companies that together cover the majority of Europe’s robot market and a broad spectrum of AI applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-DN-01

See all projects funded under this call

Coordinator

UNIVERSITY OF HAMBURG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 521 078,40
Address
MITTELWEG 177
20148 Hamburg
Germany

See on map

Region
Hamburg Hamburg Hamburg
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (6)

Partners (8)

My booklet 0 0