Project description
Expanding the scope of decorated trees in resolving low regularity dynamics
Most physical and biological phenomena are dynamical systems, systems whose state evolves over a state space in time according to a fixed rule. These are described using differential equations. Systems with greater regularity are less chaotic, making the mathematics of integration and differentiation more tenable. Low regularity comes from random (singular) noise or random (singular) initial values. Recently, a large class of singular stochastic partial differential equations has been resolved with the help of decorated trees and their Hopf algebras structures, used to expand the solutions of these dynamics. The European Research Council-funded LoRDeT project plans to enlarge the scope of decorated trees’ application to other systems of equations.
Objective
Low regularity dynamics are used for describing various physical and biological phenomena near criticality. The low regularity comes from singular (random) noise or singular (random) initial value. The first example is Stochastic Partial Differential Equations (SPDEs) used for describing random growing interfaces (KPZ equation) and the dynamic of the euclidean quantum field theory (stochastic quantization). The second concerns dispersive PDEs with random initial data which can be used for understanding wave turbulence. A recent breakthrough is the resolution of a large class of singular SPDEs through the theory of Regularity Structures invented by Martin Hairer. Such resolution has been possible thanks to the help of decorated trees and their Hopf algebras structures for organising different renormalisation procedures. Decorated trees are used for expanding solutions of these dynamics. The aim of this project is to enlarge the scope of resolution given by decorated trees and their Hopf algebraic structures. One of the main ideas is to develop algebraic tools by the mean of algebraic deformations. We want to see the Hopf algebras used for SPDEs as deformation of those used in various fields such as numerical analysis and perturbative quantum field theory. This is crucial to work in interaction with these various fields in order to get the best result for singular SPDEs and dispersive PDEs. We will focus on the following long-term objectives:
- Give a notion of existence and uniqueness of quasilinear and dispersive SPDEs.
- Derive a general framework for discrete singular SPDEs.
- Develop algebraic structures for singular SPDEs in connection with numerical analysis, perturbative quantum field theory and rough paths.
- Use decorated trees for dispersive PDEs with random initial data and derive systematically wave kinetic equations in Wave Turbulence.
- Develop a software platform for decorated trees and their Hopf algebraic structures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- natural sciences mathematics applied mathematics dynamical systems
- natural sciences physical sciences quantum physics quantum field theory
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
- natural sciences mathematics applied mathematics numerical analysis
- natural sciences mathematics pure mathematics algebra algebraic geometry
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
54052 Nancy Cedex
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.