Description du projet
Extension du champ d’application des arbres décorés dans la résolution des dynamiques de faible régularité
La plupart des phénomènes physiques et biologiques sont des systèmes dynamiques, c’est-à-dire des systèmes dont l’état évolue dans un espace d’état au cours du temps selon une règle fixe. Ils sont décrits à l’aide d’équations différentielles. Les systèmes plus réguliers sont moins chaotiques, ce qui rend les mathématiques de l’intégration et de la différenciation plus viables. La faible régularité est imputable à un bruit aléatoire (singulier) ou à des valeurs initiales aléatoires (singulières). Une grande classe d’équations différentielles partielles stochastiques singulières a récemment été résolue à l’aide d’arbres décorés et de leurs structures d’algèbres de Hopf, utilisées pour étendre les solutions de ces dynamiques. Le projet LoRDeT, financé par le Conseil européen de la recherche, entend élargir le champ d’application des arbres décorés à d’autres systèmes d’équations.
Objectif
Low regularity dynamics are used for describing various physical and biological phenomena near criticality. The low regularity comes from singular (random) noise or singular (random) initial value. The first example is Stochastic Partial Differential Equations (SPDEs) used for describing random growing interfaces (KPZ equation) and the dynamic of the euclidean quantum field theory (stochastic quantization). The second concerns dispersive PDEs with random initial data which can be used for understanding wave turbulence. A recent breakthrough is the resolution of a large class of singular SPDEs through the theory of Regularity Structures invented by Martin Hairer. Such resolution has been possible thanks to the help of decorated trees and their Hopf algebras structures for organising different renormalisation procedures. Decorated trees are used for expanding solutions of these dynamics. The aim of this project is to enlarge the scope of resolution given by decorated trees and their Hopf algebraic structures. One of the main ideas is to develop algebraic tools by the mean of algebraic deformations. We want to see the Hopf algebras used for SPDEs as deformation of those used in various fields such as numerical analysis and perturbative quantum field theory. This is crucial to work in interaction with these various fields in order to get the best result for singular SPDEs and dispersive PDEs. We will focus on the following long-term objectives:
- Give a notion of existence and uniqueness of quasilinear and dispersive SPDEs.
- Derive a general framework for discrete singular SPDEs.
- Develop algebraic structures for singular SPDEs in connection with numerical analysis, perturbative quantum field theory and rough paths.
- Use decorated trees for dispersive PDEs with random initial data and derive systematically wave kinetic equations in Wave Turbulence.
- Develop a software platform for decorated trees and their Hopf algebraic structures.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
La classification de ce projet a été validée par l'équipe qui en a la charge.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
La classification de ce projet a été validée par l'équipe qui en a la charge.
- sciences naturelles mathématiques mathématiques appliquées systèmes dynamiques
- sciences naturelles sciences physiques physique quantique théorie quantique des champs
- sciences naturelles mathématiques mathématiques pures analyse mathématique équations différentielles équations différentielles partielles
- sciences naturelles mathématiques mathématiques appliquées analyse numérique
- sciences naturelles mathématiques mathématiques pures algèbre géométrie algébrique
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2022-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
54052 Nancy Cedex
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.