Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Low Regularity Dynamics via Decorated Trees

Descrizione del progetto

Ampliare la portata degli alberi addobbati nella risoluzione di dinamiche a bassa regolarità

La maggior parte dei fenomeni fisici e biologici sono sistemi dinamici, ovvero sistemi il cui stato si evolve su uno spazio di stati nel tempo secondo una regola fissa. Questi sono descritti mediante equazioni differenziali. I sistemi con maggiore regolarità sono meno caotici, il che rende più sostenibile la matematica dell’integrazione e della differenziazione. La bassa regolarità deriva da un rumore casuale (singolare) o da valori iniziali casuali (singolari). Recentemente, un’ampia classe di equazioni differenziali parziali stocastiche singolari è stata risolta con l’aiuto di alberi addobbati e delle loro strutture di algebre di Hopf, utilizzate per espandere le soluzioni di queste dinamiche. Il progetto LoRDeT, finanziato dal Consiglio europeo della ricerca, prevede di ampliare il campo di applicazione degli alberi addobbati ad altri sistemi di equazioni.

Obiettivo

Low regularity dynamics are used for describing various physical and biological phenomena near criticality. The low regularity comes from singular (random) noise or singular (random) initial value. The first example is Stochastic Partial Differential Equations (SPDEs) used for describing random growing interfaces (KPZ equation) and the dynamic of the euclidean quantum field theory (stochastic quantization). The second concerns dispersive PDEs with random initial data which can be used for understanding wave turbulence. A recent breakthrough is the resolution of a large class of singular SPDEs through the theory of Regularity Structures invented by Martin Hairer. Such resolution has been possible thanks to the help of decorated trees and their Hopf algebras structures for organising different renormalisation procedures. Decorated trees are used for expanding solutions of these dynamics. The aim of this project is to enlarge the scope of resolution given by decorated trees and their Hopf algebraic structures. One of the main ideas is to develop algebraic tools by the mean of algebraic deformations. We want to see the Hopf algebras used for SPDEs as deformation of those used in various fields such as numerical analysis and perturbative quantum field theory. This is crucial to work in interaction with these various fields in order to get the best result for singular SPDEs and dispersive PDEs. We will focus on the following long-term objectives:
- Give a notion of existence and uniqueness of quasilinear and dispersive SPDEs.
- Derive a general framework for discrete singular SPDEs.
- Develop algebraic structures for singular SPDEs in connection with numerical analysis, perturbative quantum field theory and rough paths.
- Use decorated trees for dispersive PDEs with random initial data and derive systematically wave kinetic equations in Wave Turbulence.
- Develop a software platform for decorated trees and their Hopf algebraic structures.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
La classificazione di questo progetto è stata convalidata dal team del progetto.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2022-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

UNIVERSITE DE LORRAINE
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 498 013,00
Indirizzo
COURS LEOPOLD 34
54052 Nancy Cedex
Francia

Mostra sulla mappa

Regione
Grand Est Lorraine Meurthe-et-Moselle
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 498 013,00

Beneficiari (1)

Il mio fascicolo 0 0