CORDIS - Forschungsergebnisse der EU
CORDIS

Experimental signatures of quantum electrodynamics in the strong field regime

Projektbeschreibung

Die Quantenelektrodynamik in starken Laserfeldern erforschen

Die Quantenelektrodynamik stellt eine Kombination aus Elektromagnetismus und Quantenmechanik dar, um die Wechselwirkung zwischen Licht und Materie zu beschreiben. Obwohl sie sehr genau ist, wirft diese Theorie Probleme auf, wenn es um ultraintensive Lichtfelder geht. Im Rahmen des vom Europäischen Forschungsrat finanzierten Projekts EXAFIELD soll das Störungsregime im Labor mithilfe eines ultrastarken Lasers erforscht werden, der bei relativistischen Geschwindigkeiten von einem Plasmaspiegel reflektiert wird. Die Forschenden werden dann diesen „Doppler-verstärkten Strahl“ mit ultrakurzen, von Laser-Plasma-Generatoren erzeugten Elektronenpaketen kollidieren lassen, was die Erforschung bisher unbekannter Bereiche der Quantenelektrodynamik ermöglicht. Die Projektergebnisse könnten die Forschenden in die Lage versetzen, die Grenzen der derzeitigen Modelle zu bestimmen und neue Forschungsbereiche im nichtperturbativen Bereich der Quantenelektrodynamik zu erschließen.

Ziel

Quantum Electrodynamics (QED) is the theory that unifies electromagnetism and quantum mechanics to describe how light and matter interact. Considered as one of the most accurately tested theories, it led Richard Feynman to call it “the jewel of physics”. Yet, in the strong-field (SF) regime, when the light fields are ultra-intense, this theory is only treated perturbatively and the non-perturbative regime of SF-QED remains a terra incognita as even no theory exists to predict the behaviour of nature.
The advent of multi-PW laser infrastructures now makes the SF-QED regime within experimental reach when considering the collision of relativistic electrons with such light pulses focused above 10^22W/cm2. Yet, all planned experiments to probe SF-QED with current technologies only propose to investigate its perturbative regime, expected to be well described by theory.
In the EXAFIELD project, I propose a new concept of experiments to exceed the perturbative limit of SF-QED in the lab. This will be achieved by reflecting an ultra-intense laser pulse off a plasma mirror at relativistic speed. The strong Doppler effect occurring upon reflection up-converts the near-infrared laser pulse down to the extreme ultraviolet range which enables both temporal compression to the attosecond timescale and spatial compression down to sub-micron size. This results in a considerable intensity boost at focus of more than three orders of magnitude up to a few-10^25W/cm2.
The collision of such a “Doppler-boosted beam” with ultrashort electron bunches generated from laser-plasma accelerators will allow us to access regimes where the SF-QED can no longer be treated perturbatively, producing very strong signatures in the lab. Characterizing how the observations deviate from the perturbative theory will enable us to determine the limits of validity of the perturbative models and will open to a new area of research toward the understanding of the non-perturbative regime of SF-QED.

Programm/Programme

Gastgebende Einrichtung

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Netto-EU-Beitrag
€ 1 643 922,86
Adresse
RUE MICHEL ANGE 3
75794 Paris
Frankreich

Auf der Karte ansehen

Region
Ile-de-France Ile-de-France Paris
Aktivitätstyp
Research Organisations
Links
Gesamtkosten
€ 1 685 085,00

Begünstigte (2)