Projektbeschreibung
Neue Erkenntnisse zu wasserspaltenden Photoelektroden
Fast 75 % des europäischen Energieverbrauchs werden durch fossile Brennstoffe gedeckt. Im Bestreben, Europas Abhängigkeit von fossilen Brennstoffen zu überwinden und die globale Erwärmung zu verlangsamen, gewinnt die Umwandlung von Solarenergie in speicherbare, hochenergetische Brennstoffe an Bedeutung. Wirtschaftlich rentiert haben sich bislang vor allem Systeme auf Basis von Dünnschicht-Photoelektroden, deren komplexe interne Strukturen häufig kritische Prozesse des Geräts im Makromaßstab steuern. Das EU-finanzierte Projekt DynNano wird in einem neuen multimodalen Forschungsvorhaben Energiematerialien für die solare Wasserspaltung im Nano- bis Mikrometerbereich und unter realistischen Betriebsbedingungen untersuchen. Durch Korrelation nano- und makroskaliger Eigenschaften stellt DynNano Zusammenhänge zwischen nanoskaligen Prozessen und makroskopischer Leistung her. Insgesamt werden die gewonnenen Erkenntnisse die Wissensbasis für die Entwicklung effizienter Solarbrennstoffgeräte liefern.
Ziel
To slow down global warming and to overcome the reliance on fossil fuels, a transition to a carbon neutral society fueled by renewable energy sources will be crucial. Therefore, the conversion of solar energy to storable, energy-dense fuels will be an important step to satisfy the need for clean and reliable power. Economically viable systems for solar-to-chemical conversion often base on thin film photoelectrodes with highly complex internal architectures. The combination of different length scales of fundamental physical processes and inherent film heterogeneities results in a complex micro- and nanoscale behavior, which often controls critical processes of the macroscale device. The typical macroscale characterization of material properties conceals important insights into structural, compositional, and optoelectronic heterogeneity at the nanoscale as well as into local photoelectrochemical reaction processes and material stability. To provide a comprehensive portrait of the elementary steps associated with light-to-chemical energy conversion at their natural length scales and under working conditions, DynNano will launch a multimodal research program by leveraging a complementary suite of emerging nanoscale techniques for in-situ and operando characterization of energy materials. The approach will be applied to novel transition metal oxynitride semiconductors, which are poised to overcome efficiency and stability limitations of pure oxides and pure nitrides. By thoroughly correlating their nanoscale and macroscale properties, DynNano will establish the link between nanoscale processes and macroscopic performance of photoelectrochemical systems. With the gained understanding, DynNano aims at closing the photoelectrochemical cycle at the nanoscale using precisely microstructured photoelectrodes for standalone water splitting. Overall, DynNano will provide the knowledge basis for rational development of efficient, stable, and scalable solar fuel devices.
Wissenschaftliches Gebiet
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- engineering and technologymaterials engineeringcoating and films
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- engineering and technologyenvironmental engineeringenergy and fuelsenergy conversion
Schlüsselbegriffe
Programm/Programme
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thema/Themen
Finanzierungsplan
HORIZON-ERC - HORIZON ERC GrantsGastgebende Einrichtung
80333 Muenchen
Deutschland