European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Understanding Dynamic Processes at Nanoscale Working Interfaces for Solar Energy Conversion

Descrizione del progetto

Nuove conoscenze sui fotoelettrodi per la separazione dell’acqua

I combustibili fossili rappresentano quasi tre quarti del consumo energetico dell’UE. Per superare la dipendenza dell’Europa da tali fonti di energia e rallentare il riscaldamento globale, la conversione dell’energia solare in combustibili stoccabili e ad alta densità energetica sarà fondamentale. I sistemi economicamente validi sono spesso basati su fotoelettrodi a pellicola sottile con strutture interne complesse, che spesso controllano i processi critici del dispositivo su macroscala. Il progetto DynNano, finanziato dall’UE, avvierà un programma di ricerca multimodale per analizzare i materiali energetici finalizzati alla separazione solare dell’acqua, su una scala da nanometri a micrometri e in condizioni operative realistiche. Mettendo in relazione le loro proprietà su scala nanometrica e macroscopica, DynNano stabilirà il nesso tra i processi e le prestazioni sulle rispettive scale. Nel complesso, le conoscenze acquisite forniranno le basi per lo sviluppo di dispositivi efficienti a combustibile solare.

Obiettivo

To slow down global warming and to overcome the reliance on fossil fuels, a transition to a carbon neutral society fueled by renewable energy sources will be crucial. Therefore, the conversion of solar energy to storable, energy-dense fuels will be an important step to satisfy the need for clean and reliable power. Economically viable systems for solar-to-chemical conversion often base on thin film photoelectrodes with highly complex internal architectures. The combination of different length scales of fundamental physical processes and inherent film heterogeneities results in a complex micro- and nanoscale behavior, which often controls critical processes of the macroscale device. The typical macroscale characterization of material properties conceals important insights into structural, compositional, and optoelectronic heterogeneity at the nanoscale as well as into local photoelectrochemical reaction processes and material stability. To provide a comprehensive portrait of the elementary steps associated with light-to-chemical energy conversion at their natural length scales and under working conditions, DynNano will launch a multimodal research program by leveraging a complementary suite of emerging nanoscale techniques for in-situ and operando characterization of energy materials. The approach will be applied to novel transition metal oxynitride semiconductors, which are poised to overcome efficiency and stability limitations of pure oxides and pure nitrides. By thoroughly correlating their nanoscale and macroscale properties, DynNano will establish the link between nanoscale processes and macroscopic performance of photoelectrochemical systems. With the gained understanding, DynNano aims at closing the photoelectrochemical cycle at the nanoscale using precisely microstructured photoelectrodes for standalone water splitting. Overall, DynNano will provide the knowledge basis for rational development of efficient, stable, and scalable solar fuel devices.

Meccanismo di finanziamento

HORIZON-ERC - HORIZON ERC Grants

Istituzione ospitante

TECHNISCHE UNIVERSITAET MUENCHEN
Contribution nette de l'UE
€ 1 988 500,00
Indirizzo
Arcisstrasse 21
80333 Muenchen
Germania

Mostra sulla mappa

Regione
Bayern Oberbayern München, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 988 500,00

Beneficiari (1)