Skip to main content
European Commission logo print header

Unravelling the molecular evolution of plant-microbiome interactions in drylands

Descrizione del progetto

Uno studio analizza il modo in cui i microbi aiutano le piante ad adattarsi agli ambienti aridi

Gli ecosistemi microbici che si formano intorno alle piante ne influenzano la crescita e le aiutano ad adattarsi ai cambiamenti ambientali. Utilizzando la variazione naturale e la biogeografia, il progetto DryCoAdapt, finanziato dal CER, cercherà di esaminare il modo in cui le piante si siano evolute insieme al loro microbiota per far fronte all’aridità. La distribuzione naturale di otto coppie delle specie delle Brassicaceae servirà come quadro di riferimento ottimale per studiare le interazioni pianta-microbo in condizioni di aridità. Verrà condotto un esperimento in un giardino comune per confrontare i microbiomi di tutte le 16 specie sottoposte a stress da siccità. Lo studio potrebbe chiarire se la resistenza alla siccità indotta dai microbi sia un tratto evolutivo codificato nei genomi delle piante e identificare i meccanismi impiegati dai batteri per proteggere le piante dalla siccità.

Obiettivo

How plants evolved to shape their microbiota is a long-standing question in ecology and evolution. I posit that the microbiome forms a crucial part of how plants adapt to changing environments and that this microbiota optimization should be manifested in a strong genomic and phenotypic signature of adaptation. I propose to use natural plant variation and biogeography to dissect how plants evolved along with their microbiota to cope with aridity. Eight within-genus pairs of Brassicaceae species have been identified, distributed vicariously across a steep precipitation gradient. These species pairs represent eight independent instances of adaptation to aridity. This natural distribution offers an excellent framework for studying the evolution of plant-microbe interactions under arid conditions. My team will carry out an eco-evolutionary common garden experiment to compare the microbiomes of all 16 of these species under drought stress. By combining this experimental design with microbiome de-construction and gene deletion experiments, my lab will (i) test the hypothesis that microbially-induced drought resistance in plants is an evolutionary trait encoded in plant genomes (ii) identify the mechanisms that bacteria employ to protect plants from drought, and desert plants employ to attract beneficial bacteria. The sessility of plants dictates a particularly strong need for microbiota optimization in order to respond to a dynamic environment when there is no option to flee. Microbes are known to protect plants from drought stress, and plants are known to enrich particular microbes when stressed, but how these processes are linked remains unknown. This proposal is designed to establish this link by using our extensive knowledge on plant distribution to guide the study of the plant microbiome. Successful implementation will establish if and to what extent plants evolved to supplement their own genomes with those of their microbiota to cope with challenging environments.

Coordinatore

THE HEBREW UNIVERSITY OF JERUSALEM
Contribution nette de l'UE
€ 1 499 325,00
Indirizzo
Edmond j safra campus givat ram
91904 Jerusalem
Israele

Mostra sulla mappa

Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Altri finanziamenti
€ 0,00