European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

HYBRID TANDEM CATALYTIC CONVERSION PROCESS TOWARDS HIGHER OXYGENATE E-FUELS

Descrizione del progetto

Una strada percorribile per la produzione di elettrocarburanti

Gli elettrocarburanti ad alta densità, noti anche come carburanti elettronici, prodotti con l’aiuto dell’elettricità generata mediante fonti di energia rinnovabile, acqua e CO2 dall’aria, sono fondamentali per la decarbonizzazione dei trasporti a lungo raggio. I composti a ossigenazione moderata potrebbero contribuire a superare i limiti degli elettrocarburanti conosciuti (come gli idrocarburi non ossigenati Fischer-Tropsch o il metanolo fortemente ossigenato), ma al momento non è disponibile alcun metodo efficiente per la loro produzione. Il progetto E-TANDEM, finanziato dall’UE, svilupperà un processo ibrido che integra tre tipi di catalisi allo scopo di convertire CO2, acqua ed energie rinnovabili in carburanti elettronici a ossigenazione elevata. Il nuovo processo di produzione degli elettrocarburanti verrà dimostrato su piccola scala e sarà collaudato per valutarne la capacità di far fronte a input energetici variabili.

Obiettivo

Carbon neutral, high-energy density e-fuels are crucial to de-fossilize long-haul transport. Mildly oxygenated compounds such as C5+ (higher) alcohols and their ether derivatives hold the promise to overcome limitations of known e-fuels, such as non-oxygenated Fischer-Tropsch hydrocarbons or heavily oxygenated methanol and DME, but no process exists for their effective production. The project aims to develop a disruptive route wherein CO2, water and renewable power are converted to higher oxygenate e-fuels in a once-through hybrid process integrating three major catalysis branches: “electrocatalysis” is applied in a robust high-pressure CO2/H2O co-electrolysis step to produce e-syngas (H2/CO), which is converted in a single-reactor, slurry-phase process combining “solid thermocatalysis” for linear hydrocarbon synthesis and “molecular chemocatalysis” for in situ oxo-functionalization via reductive hydroformylation. In this process, integration of catalytic functionalities in tandem, alongside an engineered interfacing of high- and low-temperature conversion steps and energy unintensive membrane separation technologies, offer a blueprint for superior atom and energy efficiencies. The project will demonstrate the new e-fuel production process at bench-scale, and assess its capacity to cope with fluctuating energy inputs. Moreover, e-fuel formulation and life-cycle aspects are covered to fully realize the potential of the higher oxygenate e-fuel to distinctively unite excellent combustion properties (high cetane), exceptional reduction of tailpipe soot emissions, advantageous logistics as liquid at ambient conditions and compatibility with current-fleet fuel infrastructure and engine technologies, with emphasis on applications as diesel replacement in heavy-duty marine transport. An exploitation plan will be created together with international stakeholders, to consolidate EU’s capacity to export advanced e-fuel technologies to areas with vast green energy potential.

Coordinatore

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Contribution nette de l'UE
€ 587 378,75
Indirizzo
CALLE SERRANO 117
28006 Madrid
Spagna

Mostra sulla mappa

Regione
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo di attività
Research Organisations
Collegamenti
Costo totale
€ 587 378,75

Partecipanti (9)

Partner (1)