Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Mechanism and targeting of topoisomerase regulatory interactions to arrest MYC-driven tumors

Project description

Inhibiting enzymatic activity for targeted cancer therapy

DNA topoisomerases (TOPs) are enzymes that play a crucial role in managing the structure, tension and supercoiling of DNA during processes like transcription and replication. These enzymes are targets for anticancer drugs, but current use of such drugs is limited due to the associated toxicity in normal cells. Funded by the European Research Council, the MYCinTOPshape project aims to create cancer-specific TOP inhibitors by understanding the regulatory mechanisms of these enzymes. Given that the oncoprotein MYC enhances TOP activity thereby promoting cellular proliferation, researchers propose to selectively inhibit the MYC-dependent stimulation of TOP and preserve physiological TOP activity. By employing genomic tools, the study aims to delineate this mechanism and develop drugs for clinical trials, offering novel strategies in cancer biology.

Objective

Inhibitors of DNA topoisomerases (TOPs, TOP1, TOP2) are mainstays of anticancer therapy. While they have proven effective, the toxicity of current TOP drugs, caused by DNA damage-induced apoptosis of non-cancer cells, limits their use in clinic. Development of tumour-specific TOP inhibitors will require a better knowledge of the mechanisms of TOPs. This research program aims to define how TOP are regulated during transcription and replication and develop drugs that target these regulatory mechanisms for anticancer treatment.

TOPs promote transcription and replication by removing DNA supercoiling generated during polymerase elongation. In my works published in Cell and Molecular Cell, I have discovered that the activity of TOPs in the cell is regulated. The oncoprotein MYC joins TOP1 and TOP2 in a topoisome complex and stimulates their activities to remove the supercoiling produced during transcription and replication, thus boosting cellular proliferation. Therefore, I propose that targeting the mechanism of the topoisome instead of the single TOPs, will selectively halt MYC oncogenic function while preserving physiological TOP activity, avoiding the generation of DNA damage associated to current TOP drugs.

By using new genomic tools to analyse DNA topology, advanced biochemical and microscopy approaches, as well as drug screens, I will define the mechanism of MYC-driven transcriptional/replicational acceleration via topoisome assembly, and develop drugs blocking topoisome activity to arrest tumour growth. I predict this proposal is feasible based on my excellent background, compelling preliminary data, and strong collaborations with scientists at KI and National Institutes of Health. The work will identify novel strategies to target TOPs that can be put forward in clinical trials for the benefit of society. This new way of targeting TOPs to affect MYC activity constitutes a beyond the state-of-the-art and ground-breaking approach to the field of cancer biology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-COG

See all projects funded under this call

Host institution

KAROLINSKA INSTITUTET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 996 750,00
Address
NOBELS VAG 5
171 77 STOCKHOLM
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 996 750,00

Beneficiaries (1)

My booklet 0 0