Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Geometric Analysis and Surface Groups

Descripción del proyecto

Estudio de la geometría de las representaciones de Anosov

El objetivo del proyecto AnSur, financiado con fondos europeos, es investigar los vínculos entre curvas en variedades bandera, soluciones superficiales de ecuaciones diferenciales parciales geométricas en espacios simétricos afines y funciones en el espacio de módulos de curvas. La investigación se centrará en una clase general de funciones sobre espacios de módulos de representaciones de Anosov y haces uniformemente hiperbólicos. La finalidad será identificar una familia de curvas que actúen como límites potenciales asintóticos, similares a las curvas cuasisimétricas en la esfera. A continuación, los investigadores demostrarán la existencia y unicidad de superficies limitadas por estas curvas. Se considerarán sus áreas en los puntos críticos del espacio de módulos y como función renormalizadora para tener en cuenta los volúmenes de estos espacios.

Objetivo

We propose to study links between curves in flag manifolds, surfaces solutions of geometric partial differential equations in some affine symmetric spaces, and functions on the moduli space of curves. We will consider the relevant energy functions on the moduli spaces of those curves, or on the moduli space of Anosov representations for periodic data, in particular in the context of positivity. Amongst our concrete ambitious goals are: obtain topological invariant through quantising Anosov deformation spaces, define and compute volumes of Anosov deformation spaces and prove recursion formulae for them, find surfaces in symmetric spaces associated to opers and the relevant higher-rank Liouville action, solve special cases of the Auslander conjecture using foliated spaces.

More specifically, the backbone of this project is to explore a general class of functions on moduli spaces of Anosov representations and, beyond, of uniformly hyperbolic bundles. Then, we propose to identify the family of curves that will be possible asymptotic boundaries -- in the spirit of quasisymmetric curves in the sphere -- the periodic ones corresponding to Anosov representations. We will prove the existence and uniqueness of surfaces bounded at infinity by these curves. Going back, we will consider the area of such a surface, both at critical points on the moduli space, and as a renormalising function allowing to consider volumes of these moduli spaces. Finally, we will consider the space foliated by surfaces solutions of the asymptotic datum, and define entropy.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2022-ADG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

UNIVERSITE COTE D'AZUR
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 2 325 043,00
Dirección
GRAND CHATEAU 28 AVENUE VALROSE
06100 Nice
Francia

Ver en el mapa

Región
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Alpes-Maritimes
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 2 325 043,00

Beneficiarios (1)

Mi folleto 0 0