Description du projet
Étude de la géométrie des représentations d’Anosov
Le projet AnSur, financé par l’UE, se propose d’étudier les liens entre les courbes des variété de drapeaux, les solutions de surface des équations aux dérivées partielles géométriques dans les espaces symétriques affines et les fonctions sur l’espace de modules des courbes. La recherche sera orientée vers une classe générale de fonctions sur les espaces de modules des représentations d’Anosov et des faisceaux uniformément hyperboliques. L’objectif sera d’identifier une famille de courbes agissant comme des frontières asymptotiques potentielles, similaires aux courbes quasi-symétriques dans la sphère. Les chercheurs démontreront ensuite l’existence et l’unicité des surfaces délimitées par ces courbes. Leurs aires seront considérées aux points critiques de l’espace de modules et comme une fonction de renormalisation afin de prendre en compte les volumes de ces espaces.
Objectif
We propose to study links between curves in flag manifolds, surfaces solutions of geometric partial differential equations in some affine symmetric spaces, and functions on the moduli space of curves. We will consider the relevant energy functions on the moduli spaces of those curves, or on the moduli space of Anosov representations for periodic data, in particular in the context of positivity. Amongst our concrete ambitious goals are: obtain topological invariant through quantising Anosov deformation spaces, define and compute volumes of Anosov deformation spaces and prove recursion formulae for them, find surfaces in symmetric spaces associated to opers and the relevant higher-rank Liouville action, solve special cases of the Auslander conjecture using foliated spaces.
More specifically, the backbone of this project is to explore a general class of functions on moduli spaces of Anosov representations and, beyond, of uniformly hyperbolic bundles. Then, we propose to identify the family of curves that will be possible asymptotic boundaries -- in the spirit of quasisymmetric curves in the sphere -- the periodic ones corresponding to Anosov representations. We will prove the existence and uniqueness of surfaces bounded at infinity by these curves. Going back, we will consider the area of such a surface, both at critical points on the moduli space, and as a renormalising function allowing to consider volumes of these moduli spaces. Finally, we will consider the space foliated by surfaces solutions of the asymptotic datum, and define entropy.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2022-ADG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
06100 Nice
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.