Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Integrating Spectral and Geometric data on Moduli Space

Description du projet

Examiner comment les vibrations des surfaces hyperboliques affectent leur géométrie

La géométrie spectrale étudie comment les fréquences de vibration d’un objet (fréquences propres) et leurs modes associés (fonctions propres) sont liés à sa forme géométrique. Bien que ce domaine de recherche soit appliqué dans différents secteurs, notamment la mécanique quantique et les ondes sismiques, il pose plusieurs questions théoriques non résolues en mathématiques. Le projet InSpeGMoS, financé par le CER, s’intéressera aux surfaces hyperboliques et étudiera comment l’ajustement des paramètres de ces surfaces affecte leur géométrie et leur spectre. Les chercheurs tenteront d’identifier les phénomènes spectraux et géométriques qui se produisent dans 99 % des cas d’un point de vue probabiliste. L’équipe développera de nouvelles techniques d’intégration sur l’espace modulaire, cherchera de nouvelles coordonnées, généralisera l’étude de Mirzakhani sur les fonctions de volume, et utilisera la théorie des graphes aléatoires pour faire progresser les méthodes probabilistes dans la théorie spectrale des surfaces aléatoires.

Objectif

Each physical object possesses specific frequencies of vibrations, called its eigenfrequencies, at which it enters in resonance under an external stimulus. In mathematical terms these frequencies are the eigenvalues of a linear operator; they form the spectrum of the object. Spectral geometry is concerned with understanding how the spectrum of an object, as well as the modes of vibration (eigenfunctions) associated to each eigenfrequency, are related to its geometric shape. This is a wide area of research, with applied and interdisciplinary aspects (electromagnetic waves, vibrating solids, seismic waves, wave functions in quantum mechanics... ), but also involving very theoretical mathematics, with many natural questions still open: What can we learn about the topology or geometry of an object by observing its spectrum? Can we predict if the vibrations will be localized in a small part of the object or on the contrary, if they will take place everywhere ? Can we construct an object and be sure that certain frequencies are in the spectrum, or, on the opposite, be sure to avoid certain sets of frequencies ? Can there be objects of arbitrarily large size, with no small eigenfrequencies ? Project InSpeGMoS deals with a specific mathematical model : hyperbolic surfaces. The Moduli Space is a space of parameters of these surfaces that we can tune, and observe how the geometry and the spectrum vary. In the semiclassical regime (when the wavelength is small compared to the size of the object), it is expected that certain spectral features are universal. We will adopt a probabilistic point of view: try to exhibit spectral and geometric phenomena that happen in 99$% of cases. The project is focussed on developing new integration techniques on Moduli Space. We shall look for new coordinates, generalize Mirzakhanis study of volume functions, and seek inspiration in Random Graph Theory to develop new probabilistic methods in the spectral theory of random surfaces.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2022-ADG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITE DE STRASBOURG
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 686 575,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 686 575,00

Bénéficiaires (1)

Mon livret 0 0