Description du projet
Découvrir les structures cachées grâce aux mathématiques avancées
L’imagerie médicale et sismique s’appuie sur des mesures externes pour révéler des structures cachées, telles que l’intérieur du corps humain ou le sous-sol de la Terre. Toutefois, ces mesures sont souvent incomplètes ou faussées par du bruit. La résolution de ces problèmes nécessite des techniques mathématiques capables de reconstituer les détails manquants. Les progrès récents de la géométrie, des méthodes de calcul et de l’analyse des ondes ouvrent de nouvelles possibilités. Dans ce contexte, le projet PDE-INVERSE, financé par le CER, se concentre sur les problèmes inverses pour les équations aux dérivées partielles non linéaires, en utilisant une méthode développée pour l’équation des ondes géométriques. Cette approche exploite l’interaction non linéaire des ondes pour obtenir des résultats qui restent hors de portée des équations linéaires. PDE-INVERSE est à l’origine d’innovations dans les domaines de l’imagerie cérébrale, de la détection des virus et des sciences de la Terre.
Objectif
Inverse problems are a research field at the intersection of pure and applied mathematics. The goal in inverse problems is to recover information from indirect, incomplete or noisy observations. The problems arise in medical and seismic imaging where measurements made on the exterior of a body are used to deduce the properties of the inaccessible interior. We use mathematical methods ranging from microlocal analysis of partial differential equations and metric geometry to stochastics and computational methods to solve these problems.
The focus of the project are the inverse problems for non-linear partial differential equations. We attack these problems using a recent method that we developed originally for the geometric wave equation. This method uses the non-linear interaction of waves as a beneficial tool. Using it, we have been able to solve inverse problems for non-linear equations for which the corresponding problem for linear equations is still unsolved. We study the determination of a Lorentzian space-time from scattering measurements and the lens rigidity conjecture. We use geometric methods, originally developed for General Relativity, to analyze waves in a moving medium and to develop methods for medical imaging. By applying Riemannian geometry and our results in invisibility cloaking, we study counterexamples for non-linear inverse problems and use transformation optics to construct scatterers with exotic properties.
We also consider solution algorithms that combine the techniques used to prove uniqueness results for inverse problems, manifold learning and operator recurrent networks. Applications include new virus imaging methods using electron microscopy and the imaging of brains.
Practical algorithms based on the results of the research will be developed in collaboration with scientists working in medical imaging, optics, and Earth sciences.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles sciences biologiques microbiologie virologie
- sciences naturelles mathématiques mathématiques pures analyse mathématique équations différentielles
- sciences naturelles sciences physiques optique microscopie
- sciences naturelles mathématiques mathématiques pures géométrie
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2022-ADG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
00014 HELSINGIN YLIOPISTO
Finlande
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.