Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Chaperone action - a thermodynamic view

Project description

Thermodynamic principles governing molecular chaperone action

Protein structure is a hierarchy beginning with the 1D sequence of amino acids up to complex 3D conformations that are known to be capable of dynamic change. Molecular chaperones are proteins that interact with, stabilise or otherwise help proteins, guiding folding. One class of chaperones increases the solubility of their protein ‘clients’. The ERC-funded CHAPLIN project aims to elucidate general physical principles guiding these chaperones’ activity based on the hypothesis that interactions are not dependent on specific sites but on molecular and thermodynamic principles of chaperone action. Work will comprise characterisation of the aqueous solubility and self-assembly of chaperones in isolation and investigation of the thermodynamics of structures and processes in chaperone-client mixtures.

Objective

The goal of the proposed study is to obtain a fundamental understanding of the molecular mechanism and thermodynamics of chaperone action. Chaperones are critical components of all organisms and serve to ensure a healthy state of the proteome. The proposal concerns a class of chaperones that increases the solubility of client proteins. The activity of these chaperones exhibits a number of crucial but poorly understood features; for instance, there is a remarkable specificity in action combined with promiscuous recognition across sequence space. These features are challenging to achieve through molecular design and raise the question of the general physical principles which govern chaperone activity.

Our research aims to reach a general understanding, beyond specific effects, and we will study nine binary combinations of three chaperones and three client proteins. Our strategy is to first characterize in detail the aqueous solubility and self-assembly of each chaperone alone including the phase behaviour. With this knowledge, and our existing deep understanding of client self-assembly, we turn to chaperone action to study the thermodynamics of chaperone-client mixtures to determine the phase behaviour, structure of chaperone-client co-assemblies, the mixing stoichiometry and quantitative equilibrium parameters. We use state-of-the art scattering, spectroscopy, and microscopy methods and develop new methodology.

Common to the field is a mechanical view and search for specific sites in chaperone and client proteins that mediate their mutual interaction, but the promiscuity makes us question whether such sites exist. We take a new approach, not pursued by others in the field, in that we search for general molecular and thermodynamic principles of chaperone action. Our results may guide the design of small molecules that operate according to the same principles, which can serve as therapeutics toward some of the most devastating diseases affecting humans.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-ADG

See all projects funded under this call

Host institution

LUNDS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 500 000,00
Address
Paradisgatan 5c
22100 Lund
Sweden

See on map

Region
Södra Sverige Sydsverige Skåne län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 500 000,00

Beneficiaries (1)

My booklet 0 0