CORDIS - Forschungsergebnisse der EU
CORDIS

Exploring the pristine conditions for transforming interstellar dust into planetesimals

Ziel

"The formation and properties of exoplanetary systems is a fascinating question, which has been at the heart of our quest to define mankind and the conditions for life to develop in a broader context.

Recent astronomical observations have deeply modified our paradigm of planet formation, as they suggest the so-called ""proto-planetary” disks surrounding T-Tauri stars may actually already host planets. Moreover, we have obtained some of the first observational clues that the dust particles contained in the pristine disk-forming reservoirs that are the embedded protostars may already have significantly evolved from the submicronic dust populating the interstellar medium. These results suggest that dust evolves significantly
already during the first 0.5 Myrs of the star formation process, and highlight the prime importance of understanding the properties and evolution of dust in young protostars.

The PEBBLES project aims at developing a thorough methodology to characterize the properties of dust in embedded protostars, where we know the star and its disk are forming concomitantly. Using an innovative methodology combining cutting edge observational datasets, dust models and numerical models, we aim to transform our understanding of:
1) The nature of the dust incorporated in the youngest disks, a key for models of disk evolution towards planetary systems
2) The processes at work for dust evolution in young protostars, from envelopes to disk scales
3) The efficiency of magnetic fields to couple to the star/disk forming material, and set the disk properties

By shedding light on early dust evolution, we will not only address one of the oldest and most challenging question regarding the initial conditions for planet formation in disks around solar-type stars, but also provide new insight to the conditions reigning and their impact on physical processes during the main accretion stage, during which stars acquire most of their properties."

Schlüsselbegriffe

Programm/Programme

Gastgebende Einrichtung

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Netto-EU-Beitrag
€ 2 444 587,50
Adresse
RUE LEBLANC 25
75015 PARIS 15
Frankreich

Auf der Karte ansehen

Region
Ile-de-France Ile-de-France Paris
Aktivitätstyp
Research Organisations
Links
Gesamtkosten
€ 2 444 587,50

Begünstigte (1)