Projektbeschreibung
Neuartige magnetische topologische Isolatormaterialien steigern Leistung von Einzelphotonendetektoren
Das Ziel des EU-finanzierten Projekts SuperPHOTON lautet, neue ultraempfindliche Quantenlichtsensoren herzustellen und zu kommerzialisieren, die als entscheidend wichtig für den Erfolg und die Verbreitung von Quantencomputern gelten. Die strukturellen und elektronischen Eigenschaften der auf Niob basierenden Nanodrähte, die häufig als Supraleiter für die Fotodetektion dienen, eignen sich nicht für die Auslesung bei Tief- oder Raumtemperatur, was einer skalierbaren Einführung der Quantentechnologie im Wege steht. Mithilfe gepulster Laserabscheidung und Molekularstrahlepitaxie werden die Forschenden hochwertige magnetische topologische Isolatormaterialien für supraleiterbasierte Einzelphotonendetektor-Prototypen mit hohen Effizienzen und ultraniedrigem Jitter erzeugen. Das Team könnte nun mit diesen neuen topologischen Materialien Photonen bei extrem niedrigen Temperaturen ausmessen.
Ziel
Superconducting single photon detectors are critical components for emerging quantum technologies due to their high detection efficiencies, short jitter, photon number resolution, high maximum and low dark count rates. These devices may enable new ground-breaking applications in topological quantum computing and quantum internet. Niobium-based nanowires (Nb, NbN) are some of the most used superconductors for photodetection, but their material characteristics, device jitter and efficiencies cannot be effectively tuned or reproduced for scalable quantum technology deployment. The structural and electronic properties of these nanowires are not suitable for scalable cryogenic or room temperature readout. The challenges in growing high-quality quantum materials consistently provide a significant bottleneck against the development of quantum technologies that might efficiently interface with conventional microelectronics. In my ERC Grant (948063), we are using our pulsed laser deposition (PLD) and molecular beam epitaxy (MBE) expertise for magnetic topological insulators (MTI) and garnets for spintronic and superconducting devices with high conversion efficiency between electronic spins and charges. Here, I propose to develop three prototypes and obtain their patents: (1) Three MTI superconductor-based single photon detector prototypes with beyond state-of-the-art high efficiencies and ultralow jitter owing to the unique properties of MTI such as ultrafast sub-ps magnetization reversal, ballistic transport of Dirac electrons along the interfaces and integrated spin logic. (2) We are going to provide a steady supply of high-quality superconductor and spintronic films (NbN, MTI, and magnetic garnets) to accelerate basic and applied research, which is a market growing with about 20% annual rate. (3) A custom low-cost cryostat for 2-3K detector tests will be prepared with fiber optical and RF cable feedthroughs, electromagnets, readout electronics and software.
Wissenschaftliches Gebiet
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesphysical scienceselectromagnetism and electronicsmicroelectronics
- natural sciencesphysical sciencesopticslaser physicspulsed lasers
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Programm/Programme
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thema/Themen
Finanzierungsplan
HORIZON-AG-LS - HORIZON Lump Sum GrantGastgebende Einrichtung
34450 Istanbul
Türkei