Obiettivo
The use of renewable hydrogen as green fuel and energy storage was deemed key to achieve the European Green Deal. However, its large-scale storage is still facing significant challenges. Measurement inversion via deep learning (DL) is a state-of-the-art approach used for underground storage-site detection and monitoring. However: 1) It requires a huge amount of training data; 2) DL training is expensive, and 3) There are no efficient and reliable DL techniques for multiscale electromagnetic measurement inversion.
The goal of GEOLEARN is to guide hydrogen storage technologies by inverting subsurface multiscale electromagnetic measurements in real time using energy-efficient DL methods. For this purpose, GEOLEARN will leverage mixed-precision (MP) computations to maximise energy- and cost-efficiency, and ensure scalability. GEOLEARN proposes to address the above challenges as follows: 1) Develop MP finite element methods (FEMs) that can rapidly generate large training data; 2) Design MP DL algorithms that can efficiently process huge databases during training and invert measurements in real time, and 3) Apply the new techniques to invert multiscale geophysical electromagnetic measurements and guide hydrogen storage.
We will collaborate with industry to disseminate the project results and maximise exploitation, and the new methods will lead to high impacts in and outside academia.
The host has extensive experience in DL methods for inverse problems in geophysics and FEMs, and already collaborates with relevant companies. The secondment host is expert in high-performance computing and FEMs, and the applicant is expert in MP methods for scientific computing. This multidisciplinary research team is essential for the success of GEOLEARN, and will enhance the applicant's knowledge, network and skills, promoting his future career in research in Europe. The hosts and applicant will mutually benefit from the project outcomes and the industrial and academic collaborations.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali informatica e scienze dell'informazione basi di dati
- scienze naturali scienze della terra e scienze ambientali connesse geofisica
- ingegneria e tecnologia ingegneria ambientale energia e carburanti
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) HORIZON-MSCA-2022-PF-01
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
48009 Bilbao
Spagna
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.