Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Borel combinatorics and Approximations

Ziel

Infinite graphs and their combinatorics model large real-life networks, like the internet, but are also an essential tool to understand mathematical structures that are intrinsically infinite, like the geometry of the Euclidean spaces. The project concerns research in descriptive set theory and its interactions with measure theory, dynamical systems, graph limits and theoretical computer science through the study of regularity properties of combinatorial problems on infinite graphs. These considerations played a fundamental role in the spectacular results on the circle squaring problem and form a new field, measurable graph theory.

In the last years, an explosion of activity has brought new exciting ideas to this field: formal connections with the theory of distributed computing and random processes, the notion of asymptotic dimension from geometric group theory, or a generalization of the determinacy method of Marks. These ideas have already found several groundbreaking applications and are highly promising in gaining new perspectives on old problems. We propose to employ, combine and further develop these methods with particular emphasis on applications to the study of central questions of descriptive set theory, that is, Borel hyperfiniteness, equidecomposition problems, or the abstract classification problem, as well as on finding new links and applications to classical graph theory, in particular, to algorithmic aspects of partition problems on finite graphs.

The fellowship will be carried out over 26 months: 14 at UCLA, 6 at MU and 6 at Leipzig University. The supervisors, Itay Neeman at UCLA and Dan Kráľ, currently at Masaryk University and moving to Leipzig University in April 2025, are leading figures in their respective fields of interest, descriptive set theory and combinatorics. Together with the expertise of the fellow, the project promises a unique potential for bridging these fields, solving deep problems in both areas, developing the fellow's research profile and bringing the contemporary trends of descriptive set theory to Central Europe.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) HORIZON-MSCA-2022-PF-01

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

UNIVERSITAET LEIPZIG
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 37 609,68
Adresse
RITTERSTRASSE 26
04109 Leipzig
Deutschland

Auf der Karte ansehen

Region
Sachsen Leipzig Leipzig
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Beteiligte (1)

Partner (1)

Mein Booklet 0 0